CSCI 241
Scott Wehrwein

Single Source Shortest Paths: Weighted Graphs
Dijkstra's Algorithm - Intuition
Goals

Know what a weighted graph is.

Understand the intuition and high-level pseudocode for Dijkstra’s single-source shortest paths algorithm.

Be able to execute Dijkstra's algorithm on paper.
Weighted Graphs

Like a normal graph, but edges have weights.

Formally: a graph \((V,E)\) with an accompanying weight function \(w : E \rightarrow \mathbb{R}\)

- may be directed or undirected.

Informally: label edges with their weights

Representation:

- adjacency list - store weight of \((u,v)\) with \(v\) the node in \(u\)'s list
- adjacency matrix - store weight in matrix entry for \((u,v)\)
Paths in Weighted Graphs

The *length* (or *weight*) of a path in a weighted graph is the sum of the edge weights along that path.

Example: the path (1, 6, 4) has weight 7.
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):
Computing Shortest Paths in Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”, or path length!

• BFS(1): 0
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

```
1 --0-- 2
  |     |
  v     v
3 --1-- 5
     |
     v
6 --1-- 4
```
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

```
    0
   / 
 1   1
 / \
3   2
   / \
  5   2
   /   \
  6   1
   \
  4
```
Computing Shortest Paths in Unweighted Graphs

• Perform a breadth-first search (that’s it!)
• BFS visits nodes in order of “hop distance”, or path length!
• BFS(1):

```
0 1 2 3 4 5 6
1  2  3  3  2  2  1
```

The graph shows the shortest distances from node 1 to all other nodes.
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)

(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)

(shortest path length from node 1)
Dijkstra’s Shortest Paths: Subpaths

Fact: **subpaths** of shortest paths are shortest paths

Example: if the shortest path from u to w goes through v, then:

- the part of that path from u to v is the shortest path from u to v.
- if there were some better path $u..v$, that would also be part of a better way to get from u to w.
Dijkstra’s Shortest Paths: Subpaths

Fact: **subpaths** of shortest paths are shortest paths

Consequence: a **candidate** shortest path from start node s to some node v’s neighbor w is the shortest path from to v + the edge weight from v to w.

Shorthand:
- $v.d$ is the shortest (known) distance from the start to v
- $wt(v, w)$ is the weight of the edge from v to w
Dijkstra’s Shortest Paths: Intuition

Intuition: **explore nodes like BFS, but in order of path length instead of number of hops.**

There are three kinds of nodes:

- **Settled** - nodes for which we know the actual shortest path.
- **Frontier** - nodes that have been visited but we don’t necessarily have their actual shortest path.
- **Unexplored** - all other nodes.

Each node \(n \) keeps track of \(n.d \), the length of the shortest known known path from start.

We may discover a shorter path to a **frontier** node than the one we’ve found already - if so, update \(n.d \).
Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:

settled frontier unexplored

unreachable nodes
Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

- Initialize Settled to empty
- Initialize Frontier to the start node
- While the frontier isn’t empty:
 - move the node f with smallest d from F to S
 - For each neighbor w of f:
 - if we’ve never seen w before:
 - set its path length
 - add it to frontier
 - else if the path to w via f is shorter:
 - update w’s shortest path length

Formulas:
- $w.d = u.d + wt(u,w)$
- $f.d = \sum wt(f,w)$
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra's Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set:

Frontier set:

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {}

Frontier set: {4}
Dijkstra’s Shortest Paths: Execution

- Initialize Settled to empty
- Initialize Frontier to the start node
- While the frontier isn’t empty:
 - move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 - For each neighbor \(w \) of \(f \):
 - if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
 - else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

Settled set: \{4\}

Frontier set: \{\}

```
shortest-paths(4)
```

```
Node d
0  ?
1  ?
2  ?
3  ?
4  0
```

```
0 ┌───────┐
  │        │
  │ 2 ─── 4 │
  │        │
  │        │
  └───────┘

0 ┌───────┐        2 ┌───────┐
  │        │          │        │
  │ 4 ─── 3 │          │ 1 ─── 3 │
  │        │          │        │
  └───────┘          └───────┘

```
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: \{4\}
Frontier set: \{0\}
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length to \(f.d + wt(f,w) \)
 add \(w \) to the frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

Settled set: \(\{4, 0\} \)
Frontier set: {}
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0}
Frontier set: {1}
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length to \(f.d + wt(f,w) \)
 add \(w \) to the frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

Settled set: \{4, 0\}
Frontier set: \{1, 2\}

\[
\begin{array}{|c|c|}
\hline
Node & d \\
\hline
0 & 2 \\
1 & 5 \\
2 & 6 \\
3 & ? \\
4 & 0 \\
\hline
\end{array}
\]
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:

move the node f with smallest d from F to S

For each neighbor w of f:

if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: \{4, 0, 1\}

Frontier set: \{2\}
Dijkstra’s Shortest Paths:

Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 - move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 - For each neighbor \(w \) of \(f \):
 - if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
 - else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

Settled set: \{4, 0, 1\}

Frontier set: \{2, 3\}

\[
\begin{array}{|c|c|}
\hline
\text{Node} & d \\
\hline
0 & 2 \\
1 & 5 \\
2 & 6 \\
3 & 8 \\
4 & 0 \\
\hline
\end{array}
\]
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:

move the node f with smallest d from F to S

For each neighbor w of f:

if we’ve never seen w before:
set its path length to $f.d + \text{wt}(f,w)$
add w to the frontier
else if the path to w via f is shorter:
update w’s shortest path length

Settled set: \{4, 0, 1, 2\}

Frontier set: \{3\}
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f, w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: \{4, 0, 1, 2\}

Frontier set: \{3\}
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0, 1, 2}
Frontier set: {3}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0, 1, 2}
Frontier set: {3}

\[2.d + wt(2,3) < 3.d \]
\[6 + 1 < 8 \]
Dijkstra's Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0, 1, 2}
Frontier set: {3}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0, 1, 2}
Frontier set: {3}

```
shortest-paths(4)
```

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
2 \cdot d + \text{wt}(2,3) &< 3 \cdot d \\
6 + 1 &< 8 \\
7 &< 8
\end{align*}
\]
Dijkstra's Shortest Paths:

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

1. move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
2. For each neighbor \(w \) of \(f \):
 - if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f, w) \)
 - add \(w \) to the frontier
 - else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

Settled set: \{4, 0, 1, 2, 3\}

Frontier set: {} Empty => done!

<table>
<thead>
<tr>
<th>Node</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

shortest-paths(4)