
CSCI 241
Scott Wehrwein

Graph Traversals:
Depth-First Search (Iteratively)

Goals
Be able to implement DFS iteratively using a
stack.

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

1

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

0
2
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

2
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

2
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

3
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

2
5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

5

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

Depth-first Search: Iteratively
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes to be visited are
 // explorable from some node in s
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) from u:
 s.push(v);
 }
 }
}

21

50

3

4

6

Stack s:

dfs(1)

