
CSCI 241
Scott Wehrwein

Hash Tables: Rehashing

Goals
Know how and why to grow and shrink the
capacity of a hash table by resizing the array
and rehashing its contents.

Be prepared to implement rehashing so it
runs in worst-case O(C + n).

Load Factor: Performance Implications
 
Load factor λ =

entries in table

size of the array

Strategy: grow or shrink array when λ gets too large or small.

If λ is small, memory is wasted.If λ is large, runtime is slow.

Shrinking the array

0
1
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

(14 % 3) -> 2

14 “cat”

(24 % 3) -> 0

24 “ape”

Need to rehash: put each element where it belongs in the new array.

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could be O(n) =(

visits C buckets

Let C = array size
Let n = number of entries

Overall runtime is:
• worst-case O(C + n2)
• average-case O(C + n)

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size
Let n = number of entries

put is O(n) because it has to search for existing keys.
Here, we can’t have duplicate keys: all entries were already in the map!
Consequence: we don’t need to search the bucket when rehashing

Overall runtime is:
• worst-case O(C + n)

