
CSCI 241
Scott Wehrwein

AVL Trees: Rebalancing

Goals
Understand how rebalance decides what
rotations to perform.

Be prepared implement rebalance.

AVL Insertion
insert(a, 16)
=>insert(c, 16)
 =>insert(f, 16)
 =>attach new node
 rebalance(f)
 rebalance(c)
 rebalance(a)

10

8 15

4 9 16

1

11

a

b f

d e h

g

c
insert(Node n, int v):
 //…(other cases
 else: // v > n.value
 if n has right:
 insert(n.right, v)
 else:
 // attach new node
 rebalance(n);

(already balanced)
(perform rotation)

00

10

How did we know
what rotation to do?

Reminder: AVL Property

Every subtree in an AVL tree looks like one of these three trees:

h-1 h-2

h

h-2 h-1

h

h-1 h-1

h

(a) Balance factor: 1 (b) Balance factor: 0 (c) Balance factor: -1

AVL property: -1 <= balance(n) <= 1 for all nodes n.

Reminder: Tree Rotations

Reminder: Tree Rotations

subtrees (could be null, leaf, or tree with many nodes)

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances N,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances N,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances N,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances N could go one of four places.

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances N,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances N could go one of four places.
Case 1 Case 2 Case 3 Case 4

AVL Rebalance

N

C

h+1 h

h

T U

V

Case 1: After BST insertion step, the tree looks like this.

AVL Rebalance

N

C

h+1 h

h

T U

V

-2

-1h+2

h+3

Case 1: After BST insertion step, the tree looks like this.

AVL Rebalance

N

C

h+3

h+1 h

hh+2

T U

V

-2

-1

Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.

AVL Rebalance

N

C

h h

h+1

T
U V

h+2

Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.

AVL Rebalance

N

C

h h

h+1

T
U V

0h+2

h+1

Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.

0

N is now AVL balanced.

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances n,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4

AVL Rebalance

N

C h

h+1
T

h
U

V

Case 2: After BST insertion step, the tree looks like this.

AVL Rebalance

N

C h

h+1
T

h
U

V

Case 2: After BST insertion step, the tree looks like this.

-2

1h+2

h+3

AVL Rebalance

N

C h

h
U

V

Case 2: After BST insertion step, the tree looks like this.

T

x y

h+1

h+2

h+3 -2

1

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h-1 or hh-1 or h

AVL Rebalance

N

C h

h
U

V

Case 2: After BST insertion step, the tree looks like this.

T

x y

h+1

h+2

h+3 -2

1

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h-1 or hh-1 or h

AVL Rebalance

N

C

h
V

Case 2: After BST insertion step, the tree looks like this.

T

x

y

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h-1 or h

h-1 or h

h
U

AVL Rebalance

N

C

h
V

Case 2: After BST insertion step, the tree looks like this.

T

x

y

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h+1

h+2

h+3

h-1 or h

h-1 or h

h
U

AVL Rebalance

N

C

h
V

Case 2: After BST insertion step, the tree looks like this.

T

x

y

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h+1

h+2

h+3

h-1 or h

h-1 or h

h
U

AVL Rebalance

NC

hh
U V

Case 2: After BST insertion step, the tree looks like this.

T

x y

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h-1 or h h-1 or h

AVL Rebalance

NC

hh
U V

Case 2: After BST insertion step, the tree looks like this.

T

x y

Solution - two rotations:
1. Left rotate C
2. Right rotate N

h+1

h-1 or h h-1 or h

h+1

Tree is now AVL balanced.

Balance: 0

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances n,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances n,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4

Symmetric

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances n,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4

Symmetric

AVL Rebalance

N

C

h+2

h h

hh+1

T U

V

Before an insertion that unbalances n,
the tree must look like one of these:

-1

0

N

C

h+2

h h

h+1

T U

h
V

1

0

An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4

Symmetric

Implementation

h

N

C

h+2

h

hh+1

T U

V

-1

0

Case 1 Case 2

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1
 else:
 // case 2
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3
 else:
 // case 4

Implementation

N

C

h+1 h

h

T U

V

-2

-1h+2

h+3

Case 1

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1
 else:
 // case 2
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3
 else:
 // case 4

Implementation

N

C h

h+1
T

h
U

V

-2

1h+2

h+3

Case 2

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1
 else:
 // case 2
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3
 else:
 // case 4

Implementation

N

C h

h+1
T

h
U

V

-2

1h+2

h+3

Case 2
Cases 3 and 4 are

symmetric with 2 and 1

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1
 else:
 // case 2
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3
 else:
 // case 4

Implementation
Details - implementing bal:

• calculating height as in Lab
3 is O(n) - not good enough!

• Instead, nodes store their
height. Need to update
when the tree changes.

• Update each node’s height
on the way up the tree,
calculating height using only
the children’s heights.

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1
 else:
 // case 2
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3
 else:
 // case 4

Removing from AVL Tree
• Similar to insertion: remove as usual,

rebalance as necessary at each level up to
the root.

• Whereas insertion only ever requires only
one rebalance, deletion can require many

• but still no more than the tree’s height.

