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Scott Wehrwein

AVL Trees: Rebalancing



Goals

Understand how rebalance decides what
rotations to perform.

Be prepared implement rebalance.



AVL Insertion

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node

(already balanced) ( £

C)
rebalance(a)

insert(Node n, int v):
//..(other cases
else: // v > n.value

. if n has right:
How did we know insert(n.right, v)

what rotation to do? else:
// attach new node

rebalance(n);



Reminder: AVL Property

AVL property: -1 <= balance(n) <= 1 for all nodes n.

Every subtree in an AVL tree looks like one of these three trees:

: /‘h h
KA LA &4

(a) Balance factor:-1 (b) Balance factor: 0 (c) Balance factor: +1




Reminder: Tree Rotations

LEFT-ROTATE(T, X)

[ 4
lll lllllllllllllllllllllllllllllllll
N

y .................................:".. a
RIGHT-ROTATE(T, y)



Reminder: Tree Rotations

LEFT-ROTATE(T, Xx)

4
lll lllllllllllllllllllllllllllllllll
N

y .................................:".. a
RIGHT-ROTATE(T, y)

subtrees (could be null, leaf, or tree with many nodes)



AVL Rebalance

Before an insertion that unbalances N,
the tree must look like one of these:
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An insertion that unbalances N could go one of four places.



AVL Rebalance

Before an insertion that unbalances N,
the tree must look like one of these:
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Case1 Case?2 Case3 Case4
An insertion that unbalances N could go one of four places.



AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.
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AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.

Solution: right rotate on N.
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AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.
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AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.

Solution: right rotate on N.

N is now AVL balanced.




AVL Rebalance

Before an insertion that unbalances n,
the tree must look like one of these:
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h h h+1 0
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Case1 Case?2 Case3 Case4
An insertion that unbalances n could gone one of four places.



AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.




AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.
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AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

ha3 @-2 Solution - two rotations:
1. Leftrotate C

2. Rightrotate N




AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
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1. Leftrotate C
>\ 2. Rightrotate N
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AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:

@ 1. Leftrotate C
- 2. Rightrotate N
V
-4 orh
y
h
/U\

X\h-1 or h




h

@ 1. Left rotate C
2. Right rotate N
h+2 h J
V
h+1 -1 orh
y

AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.
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AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

3 @ Solution - two rotations:
1. Leftrotate C

o " 2. Right rotate N
+

h+1 -1 or h
y

/U\ X\h-1 or h




AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Leftrotate C

@\ 2. Rightrotate N
h h-1orh /R-10orh h
/U\ X Y V




AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
Balance: 0 1. Leftrotate C

2. Right rotate N
@\ Tree is now AVL balanced.

h+1
h+1

h h-1 orh /R-1orh h
/U\ X y \




AVL Rebalance

Before an insertion that unbalances n,
the tree must look like one of these:
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Case1 Case?2 Case3 Case4
An insertion that unbalances n could gone one of four places.
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An insertion that unbalances n could gone one of four places.




AVL Rebalance

Before an insertion that unbalances n,
the tree must look like one of these:
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AVL Rebalance

Before an insertion that unbalances n,
the tree must look like one of these:

af)

h+1

U
0 +«—— Symmetric —— e

Case1 Case?2 Case3 Case4
An insertion that unbalances n could gone one of four places.




Implementation

vold rebalance(n):
if bal(n) < -1:
if bal(n.left) < 0
// case 1
else:
// case 2
else if bal(n) > 1:
if bal(n.right) < 0:

// case 3
else:
// case 4

Case1 Case2
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Implementation

vold rebalance(n):
if bal(n) < -1:
if bal(n.left) < 0
// case 1
else:
// case 2
else i1f bal(n) > 1:
if bal(n.right) < 0:
// case 3
else:
// case 4

Case 2
Cases 3 and 4 are

symmetric with 2 and 1



Implementation

void rebalance(n): Details - implementing bal:
if bal(n) < -1:
1f bal(n.left) < 0 o cjlculating height as in Lab

1
el;é,case 3 is O(n) - not good enough!

// case 2

else if bal(n) > 1:
if bal(n.right) < 0: height. Need to update

 |nstead, nodes store their

// case 3 when the tree changes.
else:
// case 4 e Update each node’s height

on the way up the tree,
calculating height using only
the children’s heights.



Removing from AVL Tree

e Similar to insertion: remove as usua
rebalance as necessary at each leve
the root.

/

up to

 Whereas insertion only ever requires only

one rebalance, deletion can require many

* but still no more than the tree’s height.



