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AVL Trees: Rebalancing



Goals
Understand how rebalance decides what 
rotations to perform. 

Be prepared implement rebalance.



AVL Insertion
insert(a, 16)
=>insert(c, 16)
  =>insert(f, 16)
    =>attach new node
      rebalance(f)
    rebalance(c)
  rebalance(a)
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insert(Node n, int v):
  //…(other cases
  else: // v > n.value
    if n has right:
      insert(n.right, v)
    else:
      // attach new node
  rebalance(n);

(already balanced)
(perform rotation)
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How did we know 
what rotation to do?



Reminder: AVL Property

Every subtree in an AVL tree looks like one of these three trees: 
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(a) Balance factor: 1 (b) Balance factor: 0 (c) Balance factor: -1

AVL property: -1 <= balance(n) <= 1 for all nodes n.



Reminder: Tree Rotations



Reminder: Tree Rotations

subtrees (could be null, leaf, or tree with many nodes)



AVL Rebalance
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Before an insertion that unbalances N, 
the tree must look like one of these:
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Before an insertion that unbalances N, 
the tree must look like one of these:
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AVL Rebalance
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Before an insertion that unbalances N, 
the tree must look like one of these:
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An insertion that unbalances N could go one of four places.



AVL Rebalance
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Before an insertion that unbalances N, 
the tree must look like one of these:
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An insertion that unbalances N could go one of four places.
Case 1 Case 2 Case 3 Case 4



AVL Rebalance
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Case 1: After BST insertion step, the tree looks like this.



AVL Rebalance
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Case 1: After BST insertion step, the tree looks like this.



AVL Rebalance
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Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.



AVL Rebalance
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Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.



AVL Rebalance
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Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.

0

N is now AVL balanced.



AVL Rebalance
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Before an insertion that unbalances n, 
the tree must look like one of these:
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An insertion that unbalances n could gone one of four places.
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AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.



AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.
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AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.
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Solution - two rotations: 
1. Left rotate C 
2. Right rotate N

h-1 or hh-1 or h



AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.

T

x y

h+1

h+2

h+3 -2

1

Solution - two rotations: 
1. Left rotate C 
2. Right rotate N
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AVL Rebalance
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AVL Rebalance
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AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.
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AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.
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AVL Rebalance
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Case 2: After BST insertion step, the tree looks like this.
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Solution - two rotations: 
1. Left rotate C 
2. Right rotate N

h+1

h-1 or h h-1 or h

h+1

Tree is now AVL balanced.

Balance: 0



AVL Rebalance
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Before an insertion that unbalances n, 
the tree must look like one of these:
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An insertion that unbalances n could gone one of four places.
Case 1 Case 2 Case 3 Case 4
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Implementation
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void rebalance(n):
  if bal(n) < -1:
    if bal(n.left) < 0
      // case 1
    else:
      // case 2
  else if bal(n) > 1:
    if bal(n.right) < 0:
      // case 3
    else:
      // case 4
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Case 1

void rebalance(n):
  if bal(n) < -1:
    if bal(n.left) < 0
      // case 1
    else:
      // case 2
  else if bal(n) > 1:
    if bal(n.right) < 0:
      // case 3
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Implementation
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Case 2

void rebalance(n):
  if bal(n) < -1:
    if bal(n.left) < 0
      // case 1
    else:
      // case 2
  else if bal(n) > 1:
    if bal(n.right) < 0:
      // case 3
    else:
      // case 4



Implementation
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Case 2
Cases 3 and 4 are 

symmetric with 2 and 1 

void rebalance(n):
  if bal(n) < -1:
    if bal(n.left) < 0
      // case 1
    else:
      // case 2
  else if bal(n) > 1:
    if bal(n.right) < 0:
      // case 3
    else:
      // case 4



Implementation
Details - implementing bal: 

• calculating height as in Lab 
3 is O(n) - not good enough! 

• Instead, nodes store their 
height. Need to update 
when the tree changes. 

• Update each node’s height 
on the way up the tree, 
calculating height using only 
the children’s heights.

void rebalance(n):
  if bal(n) < -1:
    if bal(n.left) < 0
      // case 1
    else:
      // case 2
  else if bal(n) > 1:
    if bal(n.right) < 0:
      // case 3
    else:
      // case 4



Removing from AVL Tree
• Similar to insertion: remove as usual, 

rebalance as necessary at each level up to 
the root. 

• Whereas insertion only ever requires only 
one rebalance, deletion can require many 

• but still no more than the tree’s height.


