CSCl 247

Scott Wehrwein

Tree Rotations



Goals

Be able to execute BST rotations on paper.

Be prepared to implement BST rotations.



I\/Ieasuring Badness

Bad tree = Good tree =)

how bad? how good?



Measuring Badness

Balance(n): height(n.right) - height(n.left)




Tree Badness

ey Jude: can we take a bad tree and make it better?




Tree Badness

ey Jude: can we take a bad tree and make it better?




Tree Badness

ey Jude: can we take a bad tree and make it better?




Tree Badness

ey Jude: can we take a bad tree and make it better?




Tree Badness

ey Jude: can we take a bad tree and make it better?

@ R



Tree Badness

ey Jude: can we take a bad tree and make it better?

(yes!) Q
g

@ OO



Tree Rotations

modify tree structure without violating the BST property.

LEFT-ROTATE(7, x)
(e

y .................................:“.. 04
! RIGHT-ROTATE(T, y)

« 5 5 Y

N

subtrees (could be null, leaf, or tree with many nodes)

CLRS Fig 13.2, pg 313



Tree Rotations

modify tree structure without violating the BST property.

Steps in left rotation (move y up to its parent’s position):

1. Transfer 3: x's right subtree becomes y's old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree

LEFT-ROTATE(7, x)
S T LI I LT I TTTTTTTT TP s

y .................................:".. a
RIGHT-ROTATE(T, y)

o B B Y

CLRS Fig 13.2, pg 313



Tree Rotations

modify tree structure without violating the BST property.

Steps in left rotation (move y up to its parent’s position):

1. Transfer 3: x's right subtree becomes y's old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree

Details: need to update child, parent, and (possibly) root pointers.

LEFT-ROTATE(7, X)
AlfFrn

y .................................:".. a
RIGHT-ROTATE(7, y)

o p 5 Y

CLRS Fig 13.2, pg 313



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree
P

7

a

ﬁ/ \v



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
Transfer B: x's right subtree becomes y’s old left subtree ([3)

1.

2. Transter the parent: y's parent becomes x's old parent
3. Transter x itself: x becomes y's left subtree

X.R getsy.L P P

y.L.p gets x

/ ./
ﬁ/ \v & \

a



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
Transfer B: x's right subtree becomes y’s old left subtree ([3)

1.
2.

3.

ransfer the parent: y's parent becomes x’s old parent
ransfer x itself: x becomes y's left subtree

X.R getsy.L P

y.L.p gets x



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree
X.R getsy.L P P

v.L.p gets x <
a / | O '\ a /
| v \

3 3

(only rearranged the picture)




Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transfer the parent: y's parent becomes x’s old parent

3. Transter x itself: x becomes y's left subtree
X.R getsy.L P

y.L.p gets x
¥
fl
a
y.p gets X.p \
p.[L/R] getsy
Iy Y

3



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transfer the parent: y's parent becomes x’s old parent

3. Transter x itself: x becomes y's left subtree
X.R getsy.L P

y.L.p gets x \
™~
/' T /'
y.p gets Sp \ \
p.[L/R] getsy I v |

3 3

(what if p is null / x was root?)




Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transfer the parent: y's parent becomes x’s old parent

3. Transter x itself: x becomes y's left subtree
X.R getsy.L

y.L.p gets x \
y.p gets X.p
p.[L/R] getsy /

“ /

3

(what if p is null / x was root?)




Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree

ffés?itii/@\\//@\ < /ﬁ> \

3

(only rearranged the picture)




Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1. Transfer 3: x's right subtree becomes y's old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transfer x itself: x becomes y's left subtree

X.R getsy.L X
o AN o
p.[L/R] getsy @

/ \\ / \\

y.L gets x
X.p getsy



Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1. Transfer 3: x's right subtree becomes y's old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transfer x itself: x becomes y's left subtree

Rge /" § !
é‘i?slt;;iy@ @/
a/ N\ & / \V a / N\ ¢ \Y

y.L gets x
X.p getsy




Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1.
2.

ransfer B: x’s right subtree becomes y's old left subtree ()

ransfer the parent: y's parent becomes x’s old parent

3. Transfer x itself: x becomes y's left subtree
X.R getsy.L X

y.L.p gets x
y.p gets X.p

p.[L/R] getsy

7 \\ \\

y.L gets x
X.p getsy



Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1. Transfer 3: x's right subtree becomes y's old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent
3. Transter x itself: x becomes y's left subtree

X.R getsy.L P X

y.L.p gets x l <

y.p gets X.p

0.[L/R] gets y =
y.L gets x / Y / >\ 3 \V

(only rearranged the picture)



Tree Rotations

Steps in left rotation (move y up to its parent’s position):

1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree

X.R getsy.L P

y.L.p gets x l

y.p gets X.p

p.[L/R] getsy /

y.L gets x Y



Tree Rotations

Steps in left rotation (move y up to its parent’s position):
1. Transfer B: x's right subtree becomes y’'s old left subtree ([3)
2. Transter the parent: y's parent becomes x's old parent

3. Transter x itself: x becomes y's left subtree
X.R getsy.L

L. t
ytp 9ets X LEFT-ROTATE(T, x)
y.p gets X.p e ————
p.[L/R] getsy
y.L gets x RIGHT-ROTATE(T, y)

X.pgetsy «&

Overall Transformation



Pseudocode from CLRS

LEFT-ROTATE(7, x)

[—

y = Xx.right /] sety
x.right = y.left // turn y’s left subtree into x’s right subtree
if y.left # T.nil
y.left.p = x
y.p = X.p // link x’s parent to y
if x.p ==T.nil
1T.root = y
elseif x == x.p. left
x.p.left =y
else x.p.right = y
y.left = x // put x on y’s left

X.p =)

1. xter [3

2. xter
parent

3. xfer x |

N —= O O 00 JdJA L A W N

Notational quirk: assume T.nil means "null”



