CSCl 247

Scott Wehrwein

Binary Search Trees:
Runtime of BST Operations

Goals

Understand the best-case and worst-case
runtime analysis of BST add and contains.

Searching a BST:
What's the runtime?

boolean search(BST t, int v):
if t == null: Q
return false
if t.value == v:

return true ° 0

if v < t.value:
return search(t.left)

ONONONG
return search(t.right)

It his the tree’s height, search can visit at most h+1 nodes!
Runtime of search is O(h).

That's great, but how does h relate to n?

A tale ot h and n

A binary search tree has height h.
What is its minimum size Npyin?

h Nmin
0|1
1

2
3
A

LW N

A tale ot h and n

A binary search tree has height h.
What is its minimum size Npyin?

h | nnin
01
112

Nmin = h+1 2|3

h =ng,-1 3 4

h is O(n,in) Q h | h+1

Searching a BST:
What's the runtime?

boolean search(BST t, int v):
if t == null:
return false
if t.value == v:
return true
if v < t.value:
return search(t.left)
else:

return search(t.right) <::>

It his the tree’s height, search can visit at most h+1 nodes!

Runtime of search is O(h).
(worst-case)
How does h relate to n?

In a list-like tree, h is O(n), so search is O(n) (325

A tale ot h and n

A binary search tree has height h.
What is its maximum size Ny ?

h | #leaves | Npay

0 1 1
1 2 3
2 4 /
3 8 15

h| 2h | 2h+i-1

A tale ot h and n

A binary search tree has height h.
What is its maximum size Ny ?

h | #leaves | Npay

0 1 1
1 2 3
2 4 /
3 8 15

2h-1 [2h-2 < 2*2h h '2h Oh+1_1

A tale ot h and n

A binary search tree has height h.

What is its maximum size Ny ?
Ny 1S O(2h)
his O(log npmax)

h | #leaves | Npay

0 1 1
1 2 3
2 4 /
3 8 15

2h 2h—1 2h-2 < 2*2h h 2h 2h+1_1

Searching a BST:
What's the runtime?

boolean search(BST t, int v):
if t == null:
return false
if t.value == v:
return true
if v < t.value:
return search(t.left)
else:
return search(t.right)

\ % /
000000
It his the tree’s height, search can visit at most h+1 nodes!

Runtime of search is O(h).

best-case
How does h relate to n? (N)

In a complete tree, h is O(log n), so search is O(log n) &=

Set ADT: Possible Implementations

contains ada remove
LinkedList O(n) O(n) O(n)
Array (sorted) O(log n) O(n) O(n)
Array (unsorted) O(n) O(n) O(n)
Binary Search Tree O(n) O(n) 77

