
CSCI 241
Scott Wehrwein

Binary Search Trees:
Runtime of BST Operations

Goals
Understand the best-case and worst-case
runtime analysis of BST add and contains.

Searching a BST:
What’s the runtime?

boolean search(BST t, int v):
 if t == null:
 return false
 if t.value == v:
 return true
 if v < t.value:
 return search(t.left)
 else:
 return search(t.right)

If h is the tree’s height, search can visit at most h+1 nodes!
Runtime of search is O(h).

That’s great, but how does h relate to n?

10

8 16

4 9 11 17

A tale of h and n
A binary search tree has height h.
What is its minimum size nmin?

h nmin

0 1
1 2

2 3
3 4

h h+1

A tale of h and n
A binary search tree has height h.
What is its minimum size nmin?

h nmin

0 1
1 2

2 3
3 4

h h+1

nmin = h+1
h = nmin - 1
h is O(nmin)

Searching a BST:
What’s the runtime?

boolean search(BST t, int v):
 if t == null:
 return false
 if t.value == v:
 return true
 if v < t.value:
 return search(t.left)
 else:
 return search(t.right)

If h is the tree’s height, search can visit at most h+1 nodes!
Runtime of search is O(h).

In a list-like tree, h is O(n), so search is O(n)
How does h relate to n?

(worst-case)

A tale of h and n
A binary search tree has height h.
What is its maximum size nmax?

h nmax

0 1

1 2
2 4

3 8

2hh

leaves

1

3
7

15

2h+1-1

A tale of h and n
A binary search tree has height h.
What is its maximum size nmax?

h nmax

0 1

1 2
2 4

3 8

2hh

leaves

1

3
7

15

2h+1-12h 2h-1 2h-2 < 2*2h

A tale of h and n
A binary search tree has height h.
What is its maximum size nmax?

h nmax

0 1

1 2
2 4

3 8

2hh

leaves

1

3
7

15

2h+1-12h 2h-1 2h-2 < 2*2h

nmax is O(2h)
h is O(log nmax)

Searching a BST:
What’s the runtime?

boolean search(BST t, int v):
 if t == null:
 return false
 if t.value == v:
 return true
 if v < t.value:
 return search(t.left)
 else:
 return search(t.right)

If h is the tree’s height, search can visit at most h+1 nodes!
Runtime of search is O(h).

In a complete tree, h is O(log n), so search is O(log n)
How does h relate to n?

🎉

(best-case)

Set ADT: Possible Implementations

contains add remove

O(n) O(n) O(n)LinkedList

O(log n) O(n) O(n)Array (sorted)

O(n) O(n) O(n)Array (unsorted)

??Binary Search Tree O(n) O(n)

