
CSCI 241
Scott Wehrwein

Comparison-based sorting
Radix Sort

Goals
Know the meaning of a comparison sort.

Be able to execute LSD radix sort on paper.

Be prepared to implement LSD radix sort
using bucket sort in the inner loop.

Comparison Sorts
A comparison sort sorts values by comparing pairs of
elements.

For example: all the sorts we've covered so far!

Fact:

• O(n log n) is the best possible worst-case runtime for
a comparison-based sorting algorithm.

• It's mathematically impossible to do better!

 (or "comparison-based sorting algorithms")

...but is there any other way to do it?

*if your values have a constant (O(1)) number of digits

LSD Radix Sort
/** least significant digit radix sort A */
LSDRadixSort(A):
 max_digits = max # digits in any element of A
 for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!) ones place, then
tens place, then
hundreds place,
and so on

(Least-Significant-Digit)

/** least significant digit radix sort A */
LSDRadixSort(A):
 max_digits = max # digits in any element of A
 for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!)

Does this work?

[45, 26, 42, 32]

[42, 32, 45, 26]Sorted on ones:

[26, 32, 42, 45]Sorted on tens:

/** least significant digit radix sort A */
LSDRadixSort(A):
 max_digits = max # digits in any element of A
 for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!)

Why does this work?

Intuition: if we're sorting 3-digit numbers,
• sort on 100's place last
• 100's-place ties yield to the already-sorted 10's place
• Works because stability preserves orderings from

(already sorted) less significant digits in case of ties.

/** least significant digit radix sort A */
LSDRadixSort(A):
 max_digits = max # digits in any element of A
 for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!)

That's well and good, but...

...how do we do this part?

Comparison sorts are O(n log n) at best.

To sort in O(n), we need something better...

How do you sort things without
comparing them?

Suppose I asked you to sort 10 sticky notes with the digits 0 through 9.

What algorithm would you use?

01 234 5 67 89

How do you sort things without
comparing them?

Suppose I asked you to sort 10 sticky notes with the digits 0 through 9.

What algorithm would you use?

01 234 5 67 89

What algorithm would minimize the number
of times you look at each sticky note?

How do you sort things without
comparing them?

Suppose I asked you to sort 10 sticky notes with the digits 0 through 9.

What algorithm would you use?

01 234 5 67 89

What if there are duplicates?

What algorithm would minimize the number
of times you look at each sticky note?

0 1 2 3 4 5 6 7 8 9

Example: Radix sort this

Buckets
on 1’s place:

Sorted on
1’s place:

Buckets
on 10’s place:

Sorted on
10’s place:

[7, 19, 61, 11, 14, 54, 1, 08]

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Example: Radix sort this
[07, 19, 61, 11, 14, 54, 01, 08]

Buckets
on 1’s place:

Sorted on
1’s place:

Buckets
on 10’s place:

Sorted on
10’s place:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Example: Radix sort this

07 1961
11

14
54

01

08

61

11 01 14 54 07 08 19

11

Buckets
on 1’s place:

Sorted on
1’s place:

Buckets
on 10’s place:

61

01
14

54
07
08 19

Sorted on
10’s place: 01 07 08 11 14 19 54 61

[07, 19, 61, 11, 14, 54, 01, 08]

Try it out yourself: https://visualgo.net/en/sorting

https://visualgo.net/en/sorting
https://visualgo.net/en/sorting

Radix sort using bucket queues
Pseudocode adapted from visualgo.net:

LSDRadixSort(A):
 create a bucket (queue) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 enqueue element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 dequeue element into list

Counting Sort
Bucket sort is not in-place: requires O(n) storage

Counting sort is an in-place alternative: requires
only O(d) extra storage.

Intuition:

http://www.cs.miami.edu/home/burt/learning/
Csc517.091/workbook/countingsort.html

Pseudocode in CLRS (reproduced on the next slide).

http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html
http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html
http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html
http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html

Counting Sort - from CLRS
Notes:
• k is the base or radix (10 in our examples)
• B is filled with the sorted values from A.
• C maintains counts for each bucket.
• The final loop must go back-to-front to

guarantee stability.

