
CSCI 241
Scott Wehrwein

Quick Sort: Runtime

Goals
Understand the best-case and worst-case
runtime analysis of quicksort.

Know the average-case runtime of quicksort.

Merge vs Quick

"real work"
done here

"real work"
done here

Quicksort: Runtime

/** quicksort A[st..end]*/
quickSort(A, st, end):
 if (small):
 return

 mid = partition(A,st,end)

 quickSort(A,st,mid)
 quickSort(A,mid+1,end)

 # (nothing to do!)

O(1)

(excluded)

O(??)

Partition: Runtime

O(1)

O(1)

partition(A, start, end)
 initialize i, j
 choose pivot
 swap pivot to A[0]
 while [?] section != []
 # process A[i]:
 if <= p:
 move to <= p section
 else:
 move to > p section

n *

Total: O(n), where n = end - start.

Runtime: Best case
Best case:
• pivot is the median of the array
• partition splits the array exactly in half
• same analysis as merge sort

n work
n work
n work
n work

O(log n)  
levels

Best-case runtime: O(n log n)

Runtime: Worst case
Worst case:
• pivot is the minimum or maximum of the array
• partition splits the array into 1 and n-1.

n
le

ve
ls

......

n work p
n-1 work p
n-2 work p
n-3 work p
n-4 work p
n-5 work p

Worst-case runtime: O(n2)

Runtime: Average case
Average case:
• more like best case than worst case (this is rare!)
• full analysis is out of scope, but you should know

this result

Average-case runtime: O(n log n)

n work
n work
n work
n work

O(log n)  
levels

O(n/2) O(n/2)
O(n/4) O(n/4) O(n/4) O(n/4)

