
CSCI 241
Scott Wehrwein

Merge Sort: Runtime Analysis

Goals
Know how to derive the worst-case runtime
of mergesort.

Mergesort: Runtime
A strategy for analyzing recursive methods:

1. Count work done in a call
excluding recursive calls.

2. Multiply by overall number of calls made

def fact(n):
 if n <= 1:
 return n
 return n * fact(n-1)

1. O(1) work per call
2. Called once per value in

1..n+1 for a total of O(n) work

Mergesort: Runtime
A strategy for analyzing recursive methods:

1. Count work done in a call,
excluding recursive calls.

2. Multiply by overall number of calls made
/** sort A[start..end] */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

Mergesort: Runtime
A strategy for analyzing recursive methods:

1. Count work done in a call,
excluding recursive calls.

2. Multiply by overall number of calls made
/** sort A[start..end] */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

O(1)
O(1)

(excluded)
O(??)

Merge: Runtime

 while neither half is empty
 copy the smaller
 “front” element into A  

 copy any remaining  
 left half elements  

 copy any remaining  
 right half elements

merge(A, start, mid, end):
 B = deep copy of A
 initialize i, j, and k

Let n = end - start

Mergesort: Runtime
A strategy for analyzing recursive methods:

1. Count work done in a call,
excluding recursive calls.

2. Multiply by overall number of calls made
/** sort A[start..end] */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

O(1)
O(1)

(excluded)
O(end - start)

Mergesort: Runtime
A strategy for analyzing recursive methods:

1. Count work done in a call
excluding recursive calls.

2. Multiply by overall number of calls made

Problem: sometimes work depends on n, which
varies from call to call.

Mergesort: Runtime
/** sort A[start..end] */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

