CSCI 241
Scott Wehrwein
Incremental vs. Divide-and-Conquer algorithms
Goals

Understand the distinction between incremental and divide-and-conquer algorithms.

Know the generic steps of a divide-and-conquer algorithm.
Incremental Algorithms

solve a problem a little bit at a time.

Natural programming mechanism: loops
Divide-and-Conquer Algorithms
solve a problem by breaking it into smaller problems.

Natural programming mechanism: recursion

https://upload.wikimedia.org/wikipedia/commons/f/fe/Quicksort.gif
Why are we talking about divide-and-conquer, I thought we were learning how to sort things?
/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 1. Divide
 mergeSort(A, start,mid)
 mergeSort(A, mid, end)
 2. Conquer
 merge(A, start, mid, end)
 3. Combine
/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2
 Divide
 mergeSort(A,start,mid) Conquer (left)
 mergeSort(A,mid,end) Conquer (right)
 merge(A, start, mid, end) Combine
Divide-and-Conquer can yield better runtimes, and not just for sorting

- Sort n values:
 $O(n^2)$ to $O(n \log n)$

- Multiply two n-by-n matrices:
 $O(n^3)$ to $O(n^{2.81})$

- Find the closest pair of n points in a plane:
 $O(n^2)$ to $O(n \log n)$