
CSCI 241
Scott Wehrwein

Recursion: Understanding Recursive Methods

Goals
Be able to understand and develop
recursive methods without thinking about the
details of how they are executed.

1. Make sure it has a precise specification.

2. Make sure it works in the base case.

3. Ensure that each recursive call makes
progress towards the base case.

4. Replace each recursive call with the spec
and verify overall behavior is correct.

How do we understand recursive methods? 

/** returns # of ‘e’ in string s */
def count_e(s):

if len(s) == 0:
return 0

first = 0
if s[0] == ‘e’:
 first = 1

return first + count_e(s[1..end])

How do we understand recursive methods? 

1. spec

2. base case

3. progress4. recursive call —> spec

/** returns # of ‘e’ in string s */
def count_e(s):

if len(s) == 0:
return 0

first = 0
if s[0] == ‘e’:
 first = 1

return first + /*# of ‘e’ in s[1..end]*/

How do we understand recursive methods? 

1. spec

2. base case

3. progress4. recursive call —> spec

1. Write a precise specification.

2. Write a base case without using recursion.

3. Define all other cases in terms of subproblems
of the same kind.

4. Implement these definitions using the recursive
call to compute solutions to the subproblems.

How do we develop recursive methods? 

Example: Reverse a String

/** Return the reverse of s. Pre: s is not null. */
reverse(String s):

1. Write a precise specification.

3. Define all other cases in terms of subproblems.
2. Write a base case without using recursion.

 len = s.length();
 if len < 2:
 return s;
 return s[len-1] + reverse(s[1:len]) + s[0]

4. Implement the subproblems using recursive calls.
The reverse of a string is: (last character) + (interior characters in reverse) + (first character)

