
CSCI 241
Scott Wehrwein

Runtime Analysis: 
Case study - Binary Search

Best-, Worst-, and Average-case Analysis

Goals
Understand the runtime analysis of binary
search.

Know how to perform best-case, worst-case,
and average-case runtime analysis.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

L*

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

0*
L*

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

0*
L*

L*

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

0*
L*

L*
L* OR

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Let N = A.length and assume x is not in A.

1*

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

0*
L*

L*
L* OR

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Total: 5L + 4

Let N = A.length and assume x is not in A.

1*

1*

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

0*
L*

L*
L* OR

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

L*
(L+1)*

Total: 5L + 4

Let N = A.length and assume x is not in A.

1*

1*

so, O(L) ...but what is L?

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

0*
L*

L*
L* OR

• Steps of a hypothetical binary search:

A

• Steps of a hypothetical binary search:

A

• Steps of a hypothetical binary search:

A

• Steps of a hypothetical binary search:

A can be here can't be here

• Steps of a hypothetical binary search:

A

A

• Steps of a hypothetical binary search:

A

A

• Steps of a hypothetical binary search:

A

A

• Steps of a hypothetical binary search:

A

A

A

• Steps of a hypothetical binary search:

A

A

A

• Steps of a hypothetical binary search:

A

A

A

• Steps of a hypothetical binary search:

A

A

A

A

• Steps of a hypothetical binary search:

A

A

A

A

• Steps of a hypothetical binary search:

A

A

A

A

• Steps of a hypothetical binary search:

A

A

A

A

A

Size of the "can be here" region:

A

A

A

A

A

A can be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A Ncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2

can be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4
N/8

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4
N/8
N/16

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4
N/8
N/16
N/32 = 0

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4
N/8
N/16
N/32 = 0

L = 5

integer
divisioncan be here

can be here

cbh

cbh

cbh

Size of the "can be here" region:

A

A

A

A

A

A N
N/2
N/4
N/8
N/16
N/32 = 0

L = 5

integer
division

So, L is the answer to:
How many times can I divide N by 2 before it becomes 0?

can be here

can be here

cbh

cbh

cbh

How many times can I divide N by 2 before it becomes 0?

Or equivalently, using real (non-integer) division:

How many times can I divide N by 2 before it's less than 1?

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Total: 5L + 4

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Total: 5L + 4

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

5 log2(n) + 4

Runtime of Binary Search
public static int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 // invariant: A[start] <= x <= A[end-1]
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 } else if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

Total: 5L + 4

Let N = A.length and assume x is not in A.

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

5 log2(n) + 4 is O(log n)

Aside: Bases of Logarithms
Fact: converting from one base to another
only requires multiplication by a constant.

Aside: Bases of Logarithms
Corollary: the base of the logarithm doesn't
affect the big-O class.

Aside: Bases of Logarithms
Convention: We can use logs without
specifying a base in big-O notation.

Which algorithm is better?
Suppose you have two different algorithms that solve
the same problem. For example, search a sorted array.

 int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++){
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

A consequential question:
Which is better?
What is "better"?

Which algorithm is better?
Suppose you have two different algorithms that solve
the same problem. For example, search a sorted array.

 int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++){
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

A consequential question:
Which is better?
What is "better"?

O(n)

Which algorithm is better?
Suppose you have two different algorithms that solve
the same problem. For example, search a sorted array.

 int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++){
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

int binarySearch(int[] A, int x) {
 int start = 0;
 int end = A.length;
 while (start < end) {
 int mid = (start + end) / 2;
 if (x == A[mid]) {
 return mid;
 if (x < A[mid]) {
 end = mid;
 } else {
 start = mid + 1;
 }
 }
 return -1;
}

A consequential question:
Which is better?
What is "better"?

O(log n)O(n)

Best-, worst-, and Average-case

The operation count depends on the data!
• If x is at A[0], runtime is O(1)
• If x is not in A, runtime is O(N)
• If x is at a random location in A, runtime is O(N)

/** Return the index of x in A or -1 not found.*/
public static int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++) {
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

Best-, worst-, and Average-case

The operation count depends on the data!
• If x is at A[0], runtime is O(1)
• If x is not in A, runtime is O(N)
• If x is at a random location in A, runtime is O(N)

/** Return the index of x in A or -1 not found.*/
public static int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++) {
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

(best-case runtime)

Best-, worst-, and Average-case

The operation count depends on the data!
• If x is at A[0], runtime is O(1)
• If x is not in A, runtime is O(N)
• If x is at a random location in A, runtime is O(N)

/** Return the index of x in A or -1 not found.*/
public static int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++) {
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

(best-case runtime)
(worst-case runtime)

Best-, worst-, and Average-case

The operation count depends on the data!
• If x is at A[0], runtime is O(1)
• If x is not in A, runtime is O(N)
• If x is at a random location in A, runtime is O(N)

/** Return the index of x in A or -1 not found.*/
public static int linearSearch(int[] A, int x) {
 for (int i = 0; i < A.length; i++) {
 if (A[i] == x) {
 return i;
 }
 }
 return -1;
}

(best-case runtime)
(worst-case runtime)

(one possible notion of average-case runtime)

