
CSCI 241
Scott Wehrwein

Runtime Analysis: 
Counting Operations - I

Goals
Know how to count constant time operations
in simple algorithms.

Know how to find the asymptotic runtime
class (big-O runtime) of an algorithm given a
count of its constant-time operations.

How can we compare
algorithms?

• Which one finishes faster?

• Which one uses less memory?

• Which one has more lines of code?

• Which one executes more lines of code?

• How many operations does each perform  
as a function of the input data size?

constant-time
^

Counting Operations
How many constant-time operations are
executed by the following algorithm?
/** Return the sum of 0..N; Pre: N > 0 */
public static int alg1(int N) {
 int i = 0;
 int sum = 0;
 while (i < N) {
 sum += i;
 i += 1;
 }
 return sum;
}

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

How many constant-time operations are
executed by the following algorithm?
/** Return the sum of 0..N; Pre: N > 0 */
public static int alg1(int N) {
 int i = 0;
 int sum = 0;
 while (i < N) {
 sum += i;
 i += 1;
 }
 return sum;
}

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

Counting Operations

Convention: If a line has multiple primitive operations, count the line as 1.

Counting Operations
How many constant-time operations are
executed by the following algorithm?
/** Return the sum of 0..N; Pre: N > 0 */
public static int alg1(int N) {
 int i = 0;
 int sum = 0;
 while (i < N) {
 sum += i;
 i += 1;
 }
 return sum;
}

Convention: If a line has multiple primitive operations, count the line as 1.

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.

1
1

1

N
N + 1

N

Total: 3N + 4

Properties of a good
measurement system

• Explicitly depends on input size

• Doesn't sweat the details:

• Doesn't depend on hardware specifics

• Assigns same number to algorithms that
are 'close enough'

Counting Operations
How many constant-time operations are
executed by the following algorithm?
/** Return the sum of 0..N; Pre: N > 0 */
public static int alg1(int N) {
 int i = 0;
 int sum = 0;
 while (i < N) {
 sum += i;
 i += 1;
 }
 return sum;
}

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

1
1

1

N
N + 1

N

Total: 3N + 4
?!?!

Runtime class: O(N)

Properties of a good
measurement system

• Explicitly depends on input size

• Doesn't sweat the details:

• Doesn't depend on hardware specifics

• Assigns same number to algorithms that
are 'close enough'

A CS Definition of Close Enough

Strategy:
1. Identify constant-time

operations.
2. Determine how many

times each happens.
3. Drop constants and

lower-order terms.

Examples:

The asymptotic runtime class of an algorithm is the
number of constant-time operations it performs,
with all constants and lower-order terms dropped.

(aka "big-O" runtime)

Operations Big-O Runtime

N + 2 O(N)

4N + 7 O(N)

3N2 + 4N O(N2)

2N + 3N4 - N O(2N)

7 O(1)

Properties of
asymptotic runtime analysis

• Explicitly depends on input size

• Doesn't sweat the details:

• Doesn't depend on hardware specifics

• Assigns same number to algorithms that
are 'close enough'

