CSCI 241
Scott Wehrwein
Preliminaries: Algorithmic Reasoning Tools
Goals

Know the purpose and contents of a method specification

Know the definition and implications of preconditions and postconditions

Know the definition of loop invariant and be able to illustrate one with an array diagram.
/** return the max value in A
* precondition: A is nonempty
* postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

A method specification is a comment above the method that details the precise behavior of the method.

\textit{what} it does; not \textit{how} it does it.
/** return the max value in A
* precondition: A is nonempty
* postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

The precondition is true before method execution.
The postcondition is true after method execution.
Precondition, Postcondition

We can also state pre and postconditions for smaller bits of code:

```c
// swap a and b if necessary so a <= b
// precondition: ints a, b have values
// postcondition: a <= b
if (a > b) {
    int tmp = a;
    a = b;
    b = tmp;
}
```

This is most often useful for loops - example in a few slides.
Invariant

An invariant is a thing that always remains true.
- a fact you can count on
- a fact you must make sure can be counted on

Invariants are useful for reasoning about algorithms and data structures.

Example: an invariant pertaining to Java arrays is that A.length always contains the length of the array.
/** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

A loop invariant is true before the loop begins and after each iteration.

max is the largest value in:
Before the loop: A[0..1]
After iteration i: A[0..i]
After iteration n: A[0..A.length]
Precondition: \(A \)

Invariant: \(A \)

Postcondition: \(A \)

```
int max = A[0];
// invariant: max is the max of A[0..i]
for (int i = 1; i < A.length; i++) {
    if (A[i] > max) {
        max = A[i];
        // max is the largest value in:
        // Before the loop: A[0..1]
        // After iteration i: A[0..i]
        // After iteration n: A[0..A.length]
    }
}
```

A loop invariant is true before the loop begins and after each iteration.