
CSCI241 Fall 2020 Assignment 1

Due: Friday, October 16th at 9:59pm

Your submission for this and all future homework assignments must be your own work. You
may discuss topics and concepts at a high level and brainstorm with your fellow classmates, but
you cannot share, disseminate, co-author, or even view, another student’s code. Please refer
to the academic honesty guidelines on the syllabus for more details. If any of this is unclear,
please ask for clarification.
If you rely on any external resources (e.g., the internet, other textbooks, etc.), you MUST cite
those resources in the open-ended question of the A1 Survey and an acknowledgements section
of your writeup, if you’re submitting one. Under no circumstances may you cut-and-paste entire
blocks of code from the internet, other current or past students, or anywhere else. Plagiarizing
code and allowing your code to be plagiarized are both academic honesty violations that are
handled through the formal university process, resulting in an F in the course and a record of
the violation on file with the registrar.

1 Overview

In this assignment, you will implement four sorting algorithms, and an interactive command-
line program that demonstrates the sorting algorithms. For extra credit, you may also perform
experiments to measure and analyze their runtime.

Your primary tasks are as follows:

• Implement the methods for insertion, merge, quick, and radix sorts in Sorts.java. You
will also need to implement the merge and partition helper methods for merge sort and
quick sort, respectively.

• Implement the user-facing behavior described below in SortsDriver, using the sorting
methods from Sorts.java to perform the sorting.

2 Getting Started

The Github Classroom invitation link for this assignment is in Assignment 1 on Canvas. Begin
by accepting the invitation and cloning a local working copy of your repository as you did in
Lab 1. Make sure to clone it somewhere outside your lab1 working copy (e.g., ~/csci241/a1)
to avoid nesting local repositories. Skeleton code is provided in your repository to get you
started.

See Section 7 below for a suggested game plan for getting everything done in plenty of time.
The following sections provide details and hints on each subtask.

1

3 Sorting Algorithms

Sorts.java contains method headers for six public methods:

• insertionSort

• merge

• mergeSort

• partition

• quickSort

• radixSort

The method headers and specifications (i.e., the name, return type, parameters, and the
Javadoc comment specifying the method’s behavior should not be changed. If you change
method names, call signatures, or return values, your code will not compile with the testing
system and you’ll receive no credit for the correctness portion of your grade.

Public methods must implement their specifications precisely and completely. For example,
even if your quickSort method always calls partition using the first element as the pivot,
partition is still required to work with any other legal pivot index specified, because such
behavior is prescribed in the specification.

In Lab 2, you will write unit testing code that will help you check the correctness of the
sorting methods. As you develop the sorts, you should run gradle test frequently and make
sure that each algorithm passes all its tests before moving on to the next.

3.1 Implementation Notes

• You may write and use as many private helper methods as you need.

• The mergeSort and quickSort implementations must be recursive and all sorts must be
asymptotically efficient.

• The Sorts class has a private member comparisonCount. In each of the sorts that you
implement, use this counter to tally the count of comparisons that are done between
entries of the array as it is sorted. For example, for insertionSort, tally the number of
times that array[j] < inputArr[j-1] is performed. For quickSort, tally the number
of times that A[j] is compared to the pivot, etc. Be sure to count all comparisons made,
not just those that evaluate to true. You do not need to count comparisons among loop
variables (e.g., you should ignore the i < n comparison in a for loop header).

• The bottom of Sorts.java has two private helper methods written for you that you may
find useful.

• Radix sort requires the use of a stable sorting algorithm to sort the array on each digit.
You can either use counting sort (see CLRS 8.2) or maintain a list of queues, one to store
the contents of each bucket. Counting sort is algorithmically trickier. On the other hand,
creating an array of queues of integers in Java can be a bit painful because of the way
generics and arrays interact. The following snippet creates and populates an ArrayList
of 10 buckets, each of which is a LinkedList of integers:

2

ArrayList<LinkedList<Integer>> buckets = new ArrayList<LinkedList<Integer>>(10);

for (int i = 0; i < 10; i++) {

buckets.add(new LinkedList<Integer>());

}

Because buckets is an ArrayList, use buckets.get(i) to get the LinkedList storing the
i’th digit. Remember that a LinkedList implements the Queue interface; see the Java
documentation for details on which methods make it behave like a Queue.

• Radix sort as described in class does not naturally play well with negative integers. Get it
working on nonnegative numbers first, then figure out how to handle negatives. You may
assume that the values to be sorted are not extremely large or small and do not approach
the largest or smallest value that can be represented using an int.

4 Interactive Program Behavior

The main method of SortsDriver should implement a program that behaves as follows. To run
the program, you can simply use gradle run. When the program starts, it should:

1. Prompt the user to specify which sort to use (merge sort, quick sort, insertion sort, radix
sort, or all). The user should be asked to enter a single letter: m, q, i and r, or a.

2. Prompt the user for the size of the array, n, and create an array of that size made up of
integer values chosen randomly from -n..n+1.

3. If all (a) sorts is specified, the input to each sort must be identical

4. If n ≤ 20, the pre-sorted and sorted array’s contents are printed for each sort invoked

5. If n > 20, the pre-sorted and sorted array’s contents are not printed for each sort invoked

6. The count of comparisons performed is printed.

Several sample invocations of the program are shown in Figure 1. Note the order of the
prompts must be as specified, though the text does not need to be precisely the same as the
example.

4.1 Implementation Notes

• Error catching is not required: you do not have to check whether a user specifies a negative
count of entries, or inputs a letter, or provides a sort option that is not one of the valid
options (i, q, m, r, a). Consider using a switch statement.

• The java.util.Random and java.util.Scanner classes from the Java Standard Library
may come in handy.

• Don’t use System.console to read user input.

• Don’t create more than one Scanner object reading from System.in. Re-use the same
Scanner object for all user input.

• To ensure that the all option works as intended, you’ll need to make a deep copy of the
randomly generated array to give to each sort method.

3

$ gradle run -q

Enter sort (i[nsertion], q[uick], m[erge], r[adix], a[ll]): i

Enter n (size of array to sort): 15

Unsorted: [5 -14 5 -11 -15 -11 14 -8 4 9 -6 11 15 2 1]

Sorted: [-15 -14 -11 -11 -8 -6 1 2 4 5 5 9 11 14 15]

Comparisons: 37

$ gradle run -q

Enter sort (i[nsertion], q[uick], m[erge], r[adix], a[ll]): q

Enter n (size of array to sort): 1000

Comparisons: 9662

$ gradle run -q

Enter sort (i[nsertion], q[uick], m[erge], r[adix], a[ll]): r

Enter n (size of array to sort): 12

Unsorted: [3 -11 5 -7 3 10 -9 -6 -7 8 -12 3]

Sorted: [-12 -11 -9 -7 -7 -6 3 3 3 5 8 10]

Comparisons: 0

$ gradle run -q

Enter sort (i[nsertion], q[uick], m[erge], r[adix], a[ll]): a

Enter n (size of array to sort): 10

Unsorted: [-3 3 -1 -4 0 -1 5 -9 8 -7]

insertion: 22

Sorted: [-9 -7 -4 -3 -1 -1 0 3 5 8]

quick: 19

Sorted: [-9 -7 -4 -3 -1 -1 0 3 5 8]

merge: 23

Sorted: [-9 -7 -4 -3 -1 -1 0 3 5 8]

Sorted: [-9 -7 -4 -3 -1 -1 0 3 5 8]

radix: 0

$ gradle run -q

Enter sort (i[nsertion], q[uick], m[erge], r[adix], a[ll]): a

Enter n (size of array to sort): 1000

insertion: 256539

quick: 9331

merge: 8703

radix: 0

Figure 1: Sample Invocations of SortDriver.java. The -q flag simply tells Gradle to suppress
output about the tasks it’s running.

4

• For the all option, avoid counting comparisons for multiple sorts: either reset the com-
parison counter (there’s a handy method for this provided in Sorts.java) or create a fresh
Sorts object for each sort.

• Precise comparison counts may differ based on subtle implementation choices, even across
multiple correct solutions. However, the relative counts between insertion sort O(n2) and
quick sort O(n log2 n), for example, should differ greatly and clearly demonstrate their
relative run-times.

• As described in the style guide on the syllabus and the rubric at the end of this document,
overly long methods (e.g., with hundreds of lines of code) are considered bad programming
style. Be sure that your program is broken down into sensible, modular helper methods,
rather than a monolithic main method.

5 Enhancements

You can earn up to 5 points of extra credit by completing one or more of the following en-
hancements. You may also come up with your own ideas, but you should probably run them
by me to make sure they’re worthwhile and will result in points awarded if successfully com-
pleted. It is highly recommended that you complete the base assignment before attempting any
enhancements.

Enhancements and git The base project will be graded based on the master branch of
your repository. Before you change your code in the process of completing enhancements, create
a new branch in your repository (e.g., git checkout -b enhancements). Keep all changes
related to enhancements on this branch—this way you can add functionality, without affecting
your score on the base project. For example, the first enhancement asks you to add a third
user prompt to choose between a sorted array and a random array. As this departs from the
user-facing behavior described in the base project, such a change should only be made in your
enhancements branch. Make sure you’ve pushed both master and enhancements branches to
GitHub before the submission deadline.

1. (1 point, prerequisite to further enhancements) Create a writeup containing a table and
graph plotting the comparisons performed by each sorting algorithm as a function of input
size; I recommend plotting comparisons for input sizes ranging from about 10 to about
200. Be sure to label your graph’s axes and provide a title and legend. If you completed
further enhancements, be sure to include a description of what experiments you ran and
any design decisions you made, alongside plots and tables reporting your results.

2. (1 point) Real-world sorting inputs rarely come in uniformly random order. Add a prompt
that allows the user to choose among the following arrays that try to model some likely
real-world use cases:

• A random array (as in the base project)

• A fully sorted array

• An array that is sorted, except the last 5% of its values are random

• An array in which a randomly-chosen 90% of elements are, amongst themselves, in
sorted order, while the other 10% are not sorted (e.g., have random values). Tip: the
java.util.Random class’s nextDouble() method generates a random floating-point
value between 0.0 and 1.0.

5

Generate another plot for each of these types of arrays. Describe the differences—which
ones can you explain? Are any surprising/inexplicable?

3. (1 point) Make a table and plot of performance in terms of elapsed time instead of number
of comparisons. You may find the built-in System.nanoTime() function useful.

4. (1 points) Implement the median-of-three (first, middle, last) pivot in quicksort. Plot the
number of comparisons done by both variants of quicksort and insertionsort. Repeat this
experiment, but run the sorts on sorted arrays and nearly-sorted arrays.

5. (Up to 2 points) Most real-world sorts built into modern programming languages are
hybrid algorithms that combine more than one algorithm depending on the array size,
ordering, etc. Implement a hybrid sorting algorithm and analyze its performance relative
to the other sorts. You may find it interesting to note differences in performance measured
by number of comparisons vs elapsed time. Try to outperform both quicksort and inser-
tionsort on random, sorted, and mostly-sorted arrays. You may search the internet for
inspiration and strategies, but please cite your sources, write your own code, and explain
your algorithm in the writeup. A good-faith attempt that does not beat insertion and
quicksort may still receive some credit.

6 A1 Survey

After pushing your final changes to github, you will complete your submission by filling out the
A1 Survey quiz on Canvas. At a minimum, you need to provide an estimate of the number
of hours you worked on this assignment and report any collaborators or external resources you
used. You can also let me know how the assignment went in the open-ended question. The
number of hours and any other comments will not affect your grade, but your assignment
will not be considered submitted until you submit the survey. If the survey is not
filled out by the deadline, we will assume that you are planning to submit late and will not
grade your submission.

7 Game Plan

Start small, test incrementally, and git commit often. Please keep track of the number of hours
you spend on this assignment so you can report it in the A1 Survey.

Here’s a suggested timeline for completing this project on a low-stress schedule.

1. By 10/2: Implement insertion sort.

2. By 10/5: In SortsDriver, implement and test random array generation. Prompt the user
for array size and which sort, and add functionality to print the array before and after
sorting. You can implement the i option, or simply hard-code the driver to perform
insertion sort for now and implement the options later when the rest of the sorts are
completed.

3. By 10/7: If you haven’t finished in lab, complete your implementation of the test helper
methods and make sure insertion sort is bug-free.

4. By 10/9: Implement the merge helper method (you should pass tests 10–11) and mergeSort

(should pass tests 12–14).

6

5. By 10/11: Implement the partition helper method (you should pass tests 20–22) and
quickSort (should pass tests 23–24).

6. By 10/13: Implement radixSort under the assumption that all numbers are negative
and the maximum number of digits is known. At this point your code should pass tests
30–32. Next, generalize your code to handle negative numbers so that your code passes
tests 33–34.

7. By 10/15: Finish the SortsDriver functionality: implement the individual sort options
(i, m, q, r), then implement the all option. Try to avoid copy/pasting code you’ve
already written—instead, factor useful pieces into private methods that you can call more
than once.

8. By 10/16: complete any extra credit enhancements you plan to do in an enhancements

branch in your repository. Commit all new changes to this branch and don’t merge it into
the master branch. Include a description and analysis of each enhancement in a writeup
and upload it to Canvas.

9. By 10/16: Run the tests one last time and read through the rubric to make sure you’ve
finished everything. Read through the code clarity section to be sure you won’t lose style
points; see the syllabus for more details on coding style.

10. By 10pm on 10/16: Fill out the A1 Survey to complete your submission.

8 How and What to Submit

To submit the assignment, push your final changes to GitHub (git push origin master or
just git push) before the deadline, then complete the A1 Survey on Canvas. Don’t forget
that committing changes does not automatically push them to GitHub! If you’re submitting a
writeup, upload it to Canvas in PDF format.

7

Rubric

For the coding portion of each assignment, you earn points for the correctness and efficiency of
your program. Points can be deducted for errors in commenting, style, clarity, etc.

Submission

Code is pushed to github and A1 Survey is submitted with the number of hours
worked

1 point

Code : Correctness

Sorting algorithms and helper methods are implemented correctly as determined
by unit tests (1.5 points per test).

30

Program prompts user for number of integers desired, relies on random number
generator to populate the array, and prompts for type of sort to run (m, i, q, and
r, a).

3

Each invocation of a sort correctly tallies the count of comparisons made. 3

When the a option is specified, all four sorts are invoked, with the same input
array values.

3

If n ≤ 20, pre-sorted and sorted array(s) are printed; otherwise, the arrays are
not printed.

2

Code : Efficiency

Mergesort runs in O(n log n) 2

QuickSort runs in O(n log n) in the expected case 2

Insertion sort runs in-place, and runs O(n2). 2

Radix makes a constant number of O(n) passes over the input. 2

Clarity deductions (up to 2 points each)

Include author, date and purpose in a comment comment at the top of each file
you write any code in

Methods you introduce should be accompanied by a precise specification

Non-obvious code sections should be explained in comments

Indentation should be consistent

Method should be written as concisely and clearly as possible

Methods should not be too long - use private helper methods

Code should not be cryptic and terse

Variable and function names should be informative

Total 50 points

8

