
CSCI 241
Lecture 22

Miscellaneous, Review

Announcements
• Material through today is on the exam. Just

a few miscellaneous topics, review
thereafter.

• There will be in-class exercises today and
Friday

Goals
• Know the definition of planarity in graphs

• Know what it means for a sorting algorithm
to be in-place

• Understand the heap sort algorithm.

• Work on some review problems.

Drawing Graphs
• The same graph can be drawn (infinitely!)

many different ways.

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6}

E = {(1,2), (2,5), (3,5)

(4,5), (5,6)}

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

1
Not

planar

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planar(!)

3

2
6

5

1

=

Planar Graphs
• Which of the following is planar?

1. The complete graph of 4 nodes

2. The complete graph of 5 nodes

3. This graph: 
 

4. This graph:

3

2

6

4

1

5

A complete graph is a graph with all possible edges.

Aside: Detecting Planarity

• There’s a (non-obvious) theorem that says a
graph is planar if and only if it does not
contain* one of these as a subgraph:

K5
K3,3

A subgraph of a graph is a graph whose vertex and edge
sets are subsets of the larger graph’s.

• Elements of the edge subset can only contain nodes in the vertex subset.

*The definition of
“contain” is slightly more
general than having one
of these directly as a
subgraph.

Magic trick time!

• Remember that heap lecture when I ran out of time
for my magic trick?

Heapsort
public static void heapsort(int[] b) {

}

Heapsort
public static void heapsort(int[] b) {
 Heap h = new Heap<Integer>();
 // put everything into a heap - n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 h.add(b[k]);
 }

 // pull everything out in order - n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 b[k] = poll(b, k);
 }
}

Heapsort
public static void heapsort(int[] b) {
 Heap h = new Heap<Integer>();
 // put everything into a heap - n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 h.add(b[k]);
 }

 // pull everything out in order - n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 b[k] = poll(b, k);
 }
} Worst-case runtime: O(n log n) !

In-Place
• Time complexity: how many operations?

• Space complexity: how much (extra) memory?

• Usually don’t count the size of the input, because we have no
choice but to store it.

In-Place
• Time complexity: how many operations?

• Space complexity: how much (extra) memory?

• Usually don’t count the size of the input, because we have no
choice but to store it.

insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] > A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

ABCD:

How much extra space
does insertion sort use?

A. O(1)

B. O(log n)

C. O(n)

D. O(n2)

In-Place
A sort is considered in-place if it requires O(1)
storage space in addition to the input.

insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] > A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

ABCD:

How much extra space
does insertion sort use?

A. O(1)

B. O(log n)

C. O(n)

D. O(n2)

Sort Space Complexity
• Which of the following are in-place sorts?

1. Insertion

2. Selection

3. Quick

4. Merge

5. Radix

6. Heap

