CSCI 241
Lecture 22
Miscellaneous, Review
Announcements

• Material through today is on the exam. Just a few miscellaneous topics, review thereafter.

• There will be in-class exercises today and Friday
Goals

• Know the definition of planarity in graphs

• Know what it means for a sorting algorithm to be in-place

• Understand the heap sort algorithm.

• Work on some review problems.
Drawing Graphs

- The same graph can be drawn (infinitely!) many different ways.

\[V = \{1,2,3,4,5,6\} \]
\[E = \{(1,2), (2,5), (3,5), (4,5), (5,6)\} \]
Planarity

- If a graph can be drawn without crossing edges, it is **planar**.
Planar Graphs

A complete graph is a graph with all possible edges.

- Which of the following is planar?

1. The complete graph of 4 nodes

2. The complete graph of 5 nodes

3. This graph:

4. This graph:
Aside: Detecting Planarity

A subgraph of a graph is a graph whose vertex and edge sets are subsets of the larger graph’s.

- Elements of the edge subset can only contain nodes in the vertex subset.

- There’s a (non-obvious) theorem that says a graph is planar if and only if it does not contain* one of these as a subgraph:

*The definition of “contain” is slightly more general than having one of these directly as a subgraph.
Magic trick time!

- Remember that heap lecture when I ran out of time for my magic trick?
Heapsort

public static void heapsort(int[] b) {

}
Heapsort

public static void heapsort(int[] b) {
 Heap h = new Heap<Integer>();
 // put everything into a heap – n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 h.add(b[k]);
 }

 // pull everything out in order – n*log(n)
 for (int k = 0; k < b.length; k = k+1) {
 b[k] = poll(b, k);
 }
}
public static void heapsort(int[] b) {
 Heap h = new Heap<Integer>();
 // put everything into a heap – n*\log(n)
 for (int k = 0; k < b.length; k = k+1) {
 h.add(b[k]);
 }

 // pull everything out in order – n*\log(n)
 for (int k = 0; k < b.length; k = k+1) {
 b[k] = poll(b, k);
 }
}

Worst-case runtime: \(O(n \log n)\)!
In-Place

• Time complexity: how many operations?

• Space complexity: how much (extra) memory?

 • Usually don’t count the size of the input, because we have no choice but to store it.
In-Place

• Time complexity: how many operations?

• Space complexity: how much (extra) memory?

• Usually don’t count the size of the input, because we have no choice but to store it.

ABCD:
How much extra space does insertion sort use?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n^2)$
In-Place

A sort is considered **in-place** if it requires $O(1)$ storage space in addition to the input.

insertionSort A:

```java
i = 0;
while i < A.length:
    j = i;
    while j > 0 and A[j] > A[j-1]:
        swap(A[j], A[j-1])
        j--
    i++
```

ABCD:
How much extra space does insertion sort use?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n^2)$
Sort Space Complexity

• Which of the following are in-place sorts?

 1. Insertion
 2. Selection
 3. Quick
 4. Merge
 5. Radix
 6. Heap