Announcements

• Extra office hours are a possibility tomorrow if there’s demand.

• Final exam study guide coming soon.

 • Same as midterm: it’s just the Goals from each lecture.

• Final exam:

 • 3/18 10:30am-12:30pm

 • You’ll be allowed two 2-sided 8.5x11 sheets of hand-written notes.
Goals

• See a proof of correctness of Dijkstra’s algorithm.

• Know what it means for a graph to be planar

• Know the definition of a Directed Acyclic Graph (DAG) and how to check whether a graph is a DAG using Topological Sort.
Dijkstra's Shortest Paths: Cartoon

Before:

During:

After:

settled frontier unexplored

unreachable nodes
The next slide is so important, I’m going to show it to you again.
Implementing Dijkstra Efficiently (A4)

\[S = \{ \} \}; F = \{v\}; v.d = 0; v.bp = \text{null}; \]
\[\text{while} \ (F \neq \{\}) \{ \]
\[\quad f = \text{node in } F \text{ with min } d \text{ value}; \]
\[\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \]
\[\quad \text{for each neighbor } w \text{ of } f \{ \]
\[\qquad \text{if} \ (w \text{ not in } S \text{ or } F) \{ \]
\[\qquad \quad w.d = f.d + \text{weight}(f, w); \]
\[\qquad \quad w.bp = f; \]
\[\qquad \quad \text{add } w \text{ to } F; \]
\[\qquad \} \text{ else if} \ (f.d + \text{weight}(f, w) < w.d) \{ \]
\[\qquad \quad w.d = f.d + \text{weight}(f, w); \]
\[\qquad \quad w.bp = f \]
\[\} \}
\]

1. Store Frontier in a min-heap priority queue with d-values as priorities.
2. To efficiently iterate over neighbors, use an adjacency list graph representation.
3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.
Implementing Dijkstra Efficiently (A4)

1. Store Frontier in a min-heap priority queue with d-values as priorities.
2. To efficiently iterate over neighbors, use an adjacency list graph representation.
3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node, PathData>
4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

```java
S = {}; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            w.bp = f;
            add w to F;
        } else if (f.d+weight(f, w) < w.d) {
            w.d = f.d+weight(f, w);
            w.bp = f
        }
    }
}
```
Implementing Dijkstra Efficiently (A4)

\[S = \{ \}; \ F = \{v\}; \ v.d = 0; \ v.bp = \text{null}; \]

\[\text{while } (\ F \neq \{\}) \{ \]
\[\quad f = \text{node in } F \text{ with min } d \text{ value; Remove } f \text{ from } F, \text{ add it to } S; \]
\[\quad \text{for each neighbor } w \text{ of } f \{ \]
\[\quad \quad \text{if } (w \text{ not in } S \text{ or } F) \{ \]
\[\quad \quad \quad w.d = f.d + \text{weight}(f, w); \]
\[\quad \quad \quad w.bp = f; \]
\[\quad \quad \quad \text{add } w \text{ to } F; \]
\[\quad \quad \text{else if } (f.d+weight(f,w) < w.d) \{ \]
\[\quad \quad \quad w.d = f.d+\text{weight}(f,w); \]
\[\quad \quad \quad w.bp = f \]
\[\quad \}
\[\}
\[\}

1. Store Frontier in a min-heap priority queue with d-values as priorities.

2. To efficiently iterate over neighbors, use an adjacency list graph representation.

3. Could store \(w.d \) and \(w.bp \) in Node class; in A4, we use a HashMap\langle Node, PathData\rangle.

4. No need to explicitly store Settled or Unexplored sets: a node is in \(S \) or \(F \) iff it is in the map.
Implementing Dijkstra Efficiently (A4)

\[S = \{ \} \; F = \{ v \} ; \; v.d = 0 ; \; v.bp = \text{null} ; \]
\[\text{while } (F \neq \{ \}) \{ \]
 \[f = \text{node in } F \text{ with min } d \text{ value} ; \]
 \[\text{Remove } f \text{ from } F , \text{ add it to } S ; \]
 \[\text{for each neighbor } w \text{ of } f \{ \]
 \[\text{if } (w \text{ not in } S \text{ or } F) \{ \]
 \[w.d = f.d + \text{weight}(f, w) ; \]
 \[w.bp = f ; \]
 \[\text{add } w \text{ to } F ; \]
 \[\} \text{ else if } (f.d + \text{weight}(f,w) < w.d) \{ \]
 \[w.d = f.d + \text{weight}(f,w) ; \]
 \[w.bp = f \]
 \[\} \]
\[\} \]

4. No need to explicitly store Settled or Unexplored sets:
\[w \text{ is in } S \text{ or } F \iff \text{it is in the map} \]

The only time we need to check membership in \(S \) is \textit{here}.

If \(w \) is not in \(S \) or \(F \), \it{it must be in Unexplored}.

\[\text{therefore,} \]
\[\text{we haven’t found a path to it} . \]

\[\text{therefore,} \]
\[\text{it has no d or bp yet} . \]

\[\text{therefore,} \]
\[\text{it isn’t in the map}! \]
Proof of Correctness

• Dijkstra’s algorithm is greedy: it makes a sequence of locally optimal moves, which results in the globally optimal solution.

• Most algorithms don’t work like this - need to prove that it results in the global optimum.

• Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.
Proof of Correctness: Invariant

The while loop in Dijkstra’s algorithm maintains a 3-part invariant:

1. For a Settled node s, a shortest path from v to s contains only settled nodes and $s.d$ is length of shortest $v \rightarrow s$ path.

2. For a Frontier node f, at least one $v \rightarrow f$ path contains only settled nodes (except perhaps for f) and $f.d$ is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$

```plaintext
S = \{\}; F = \{v\}; v.d = 0;
while (F \neq \{\}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        }
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    }
    Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.
}
Proof of Correctness:

Theorem: For a node $f$ in the Frontier with minimum $d$ value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from $v$ to $f$.

Proof: Show that any other path from $v$ to $f$ has length $\geq f.d$

\begin{verbatim}
S = {}; F = {v}; v.d = 0;
while (F $\neq$ {}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor $w$ of $f$ {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d + weight(f,w) < w.d) {
            w.d = f.d + weight(f,w);
        }
    }
}
\end{verbatim}

Case 2: $v$ is in $S$. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from $v$ to $f$ containing all settled nodes except $f$, and $f.d$ is the length of such a path.
Proof of Correctness:

Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to f if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    } else if (f.d+weight(f,w) < w.d) {
        w.d = f.d+weight(f,w);
    }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:
Proof of Correctness:  

**Theorem:** For a node $f$ in the Frontier with minimum $d$ value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from $v$ to $f$.

**Proof:** Show that any other path from $v$ to $f$ has length $\geq f.d$

\[
S = \{ \}; \ F = \{v\}; \ v.d = 0;
\]

while ($F \neq \{\}$)  
  
  $f = \text{node in } F \text{ with min } d \text{ value};$
  Remove $f$ from $F$, add it to $S;$
  for each neighbor $w$ of $f$  
    if ($w$ not in $S$ or $F$)  
      \[
      w.d = f.d + \text{weight}(f, w);
      \]
      add $w$ to $F;$
    } else if ($f.d + \text{weight}(f,w) < w.d$)  
      \[
      w.d = f.d + \text{weight}(f,w);
      \]
  }  

**Case 2:** $v$ is in $S$. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from $v$ to $f$ containing all settled nodes except $f$, and $f.d$ is the length of such a path.

Any other $v$-$f$ path must either be longer or go through another frontier node $g$ then arrive at $f$:  
\[
d.f \leq d.g,
\]
so that path cannot be shorter.
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    }
}
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)

At initialization:
1. S is empty; trivially true.
2. v.d = 0, which is the shortest path.
3. S is empty, so no edges leave it.
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored).

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f, w) < w.d) {
            w.d = f.d+weight(f, w);
        }
    }
}

At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.
Questions?
Drawing Graphs

- The same graph can be drawn (infinitely!) many different ways.

\[ V = \{1, 2, 3, 4, 5, 6\} \]
\[ E = \{(1, 2), (2, 5), (3, 5), (4, 5), (5, 6)\} \]

![Graph diagrams]
Planarity

- If a graph can be drawn without crossing edges, it is **planar**.

```
Planar
```
```text
1 2 3 4 5 6
Planar(!)
```
```text
1 2 3 4 5 6
Planar
```
```text
1 2 3 4 5 6
Planar(!)
```
```text
1 2 3 4 5 6
Not planar
```
Detecting Planarity

A subgraph of a graph is a graph whose vertex and edge sets are subsets of the larger graph’s.

- Elements of the edge subset can only contain nodes in the vertex subset.

- There’s a (non-obvious) theorem that says a graph is planar if and only if it does not contain* one of these as a subgraph:

*The definition of “contain” is slightly more general than having one of these directly as a subgraph.
DAGs

• A **DAG**, or **Directed Acyclic Graph** is a graph that is **directed** and **acyclic**.
Is this a DAG?

- How do we tell if a directed graph is acyclic?
  - If a node has indegree 0, it can’t be part of a cycle.
  - Edges coming from that node also can’t be part of a cycle.

Algorithm:

while there is a node with indegree 0:
    delete the node and all edges coming from it

if the graph is empty, the original graph was a DAG
Is this a DAG?

• How do we tell if a directed graph is acyclic?
  • If a node has indegree 0, it can’t be part of a cycle.
  • Edges coming from that node also can’t be part of a cycle.

Algorithm:

while there is a node with indegree 0:
  delete the node and all edges coming from it

if the graph is empty, the original graph was a DAG
Is this a DAG?

• How do we tell if a directed graph is acyclic?
  • If a node has indegree 0, it can’t be part of a cycle.
  • Edges coming from that node also can’t be part of a cycle.

Algorithm:

while there is a node with indegree 0:
  delete the node and all edges coming from it

if the graph is empty, the original graph was a DAG
Is this a DAG?

- How do we tell if a directed graph is acyclic?
  - If a node has indegree 0, it can’t be part of a cycle.
  - Edges coming from that node also can’t be part of a cycle.

**Algorithm:**

while there is a node with indegree 0:

  delete the node and all edges coming from it

if the graph is empty, the original graph was a DAG
Is this a DAG?

• How do we tell if a directed graph is acyclic?
  
  • If a node has indegree 0, it can’t be part of a cycle.
  
  • Edges coming from that node also can’t be part of a cycle.

Algorithm:

while there is a node with indegree 0:

  delete the node and all edges coming from it

if the graph is empty, the original graph was a DAG
Is this a DAG?

• How do we tell if a directed graph is acyclic?
  
  • If a node has indegree 0, it can’t be part of a cycle.
  
  • Edges coming from that node also can’t be part of a cycle.

Algorithm:

  while there is a node with indegree 0:

    delete the node and all edges coming from it

  if the graph is empty, the original graph was a DAG
Topological Sort

Topological sort (or toposort):

\[ i = 0 \]

while there is a node with indegree 0:

  delete* the node and all edges coming from it
  label* the deleted node i
  increment i

if the graph is empty, the original graph was a DAG
Topological Sort

Topological sort (or toposort):

\[ i = 0 \]

while there is a node with indegree 0:

  delete* the node and all edges coming from it

  label* the deleted node i

increment i

if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don’t want to actually modify the graph. We’ll need to store extra data with nodes and edges, and possibly overlay additional data structures to make it efficient.
Topological Sort

• Here are the labels we applied to the example graph:

• Property: all edges go from a lower-numbered node to a higher-numbered node.

• Useful for dependency resolution, job scheduling,

• Ordering is not necessarily unique: could have chosen from among multiple nodes with indegree 0.
Tensorflow Computation Graphs

Computation graph implementing the equation \( z = 2 \times (a-b) + c \)

- \( a \), \( b \), \( c \): input tensors (scalar)
- \( r_1 \), \( r_2 \): intermediate result tensors
- \( z \): tensor of the final result

slide credit: O'Reilly Media, Python Machine Learning