
CSCI 241
Lecture 21

Dijkstra Proof of Correctness

More Graph Stuff, MSTs

Announcements
• Extra office hours are a possibility tomorrow if

there’s demand.

• Final exam study guide coming soon.

• Same as midterm: it’s just the Goals from each lecture.

• Final exam:

• 3/18 10:30am-12:30pm

• You’ll be allowed two 2-sided 8.5x11 sheets of hand-written
notes.

Goals
• See a proof of correctness of Dijkstra’s

algorithm.

• Know what it means for a graph to be
planar

• Know the definition of a Directed Acyclic
Graph (DAG) and how to check whether a
graph is a DAG using Topological Sort.

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes

The next slide is so important,
I’m going to show it to you

again.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F,

it must be in Unexplored.

The only time we need to check
membership in S is here.

therefore,

we haven’t found a path to it.

therefore,

it has no d or bp yet.

therefore,

it isn’t in the map!

Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a

sequence of locally optimal moves, which
results in the globally optimal solution.

• Most algorithms don’t work like this - need to prove
that it results in the global optimum.

• Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof of Correctness:
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier
F

Settled
S

Unexplored

f

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f: fv g

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

fv g

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.

Questions?

Drawing Graphs
• The same graph can be drawn (infinitely!)

many different ways.

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6}

E = {(1,2), (2,5), (3,5)

(4,5), (5,6)}

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

1
Not

planar

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planar(!)

3

2
6

5

1

=

Detecting Planarity

• There’s a (non-obvious) theorem that says a
graph is planar if and only if it does not
contain* one of these as a subgraph:

K5
K3,3

A subgraph of a graph is a graph whose vertex and edge
sets are subsets of the larger graph’s.

• Elements of the edge subset can only contain nodes in the vertex subset.

*The definition of
“contain” is slightly more
general than having one
of these directly as a
subgraph.

DAGs
• A DAG, or Directed Acyclic Graph is a…

graph that is directed and acyclic.

A

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

A

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

E

FF

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

F

Topological Sort
Topological sort (or toposort):

 i = 0

 while there is a node with indegree 0:

 delete* the node and all edges coming from it

 label* the deleted node i

 increment i

 if the graph is empty, the original graph was a DAG

Topological Sort
Topological sort (or toposort):

 i = 0

 while there is a node with indegree 0:

 delete* the node and all edges coming from it

 label* the deleted node i

 increment i

 if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don’t want to actually modify the graph.
We’ll need to store extra data with nodes and edges, and possibly overlay
additional data structures to make it efficient.

Topological Sort
• Here are the labels we applied to the example graph:

• Property: all edges go from a lower-numbered node
to a higher-numbered node.

• Useful for dependency resolution, job scheduling,

• Ordering is not necessarily unique: could have
chosen from among multiple nodes with indegree 0.

1

2

3

4

5

6

Tensorflow Computation Graphs

slide credit: O’Reilly Media, Python Machine Learning

