

CSCI 241

Lecture 21 Dijkstra Proof of Correctness More Graph Stuff, MSTs

Announcements

- Extra office hours are a possibility tomorrow if there's demand.
- Final exam study guide coming soon.
 - Same as midterm: it's just the Goals from each lecture.
- Final exam:
 - 3/18 10:30am-12:30pm
 - You'll be allowed two 2-sided 8.5x11 sheets of hand-written notes.

Goals

- See a proof of correctness of Dijkstra's algorithm.
- Know what it means for a graph to be planar
- Know the definition of a Directed Acyclic Graph (DAG) and how to check whether a graph is a DAG using Topological Sort.

The next slide is so important, I'm going to show it to you again.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f \langle
 - for each neighbor w of f {
 if (w not in S or E) (
 - if (w not in S or F) {
 w.d = f.d + weight(f, w);
 - w.bp = f;
 - add w to F;
 - } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f</pre>

Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w); w.bp = f; add w to F;

```
add w to r,
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

. Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w); w.bp = f; add w to F;
 - } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f</pre>

Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

$S = \{ \}; F = \{v\}; v.d = 0; v.bp = null$	II; 4. No need to explicitly store
while $(F \neq \{\})$ {	Settled or Unexplored sets:
f = node in F with min d value;	w is in S or $F \ll$ it is in the map.
Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) {	The only time we need to check nembership in S is here .
w.d = $f.d + weight(f, w);$ w.bp = $f;$	If w is not in S or F, it must be in Unexplored.
add w to F;	therefore,
<pre>} else if (f.d+weight(f,w) < w.d) {</pre>	{ we haven't found a path to it.
w.d = f.d+weight(f,w);	therefore,
w.bp = f	it has no d or bp yet.
}	therefore,
}	it isn't in the map!
\mathbf{i}	

- Dijkstra's algorithm is greedy: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.
 - Most algorithms don't work like this need to prove that it results in the global optimum.
- Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.

Proof of Correctness: Frontier Unexplored Invariant

Settled

S

f

The while loop in Dijkstra's algorithm maintains a 3part invariant:

 For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

$\{v\}; v.d = 0;$ $\{v\}, \{v.d = 0; \}$ $\{v\}, \{v, v\}, \{$

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;

```
Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f.
```

Proof: Show that any other path from v to if has length >= f.d

```
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);</pre>
```

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;

Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value; Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 }
else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
}

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- All edges leaving S go to F (or: no edges from S to Unexplored)

At initialization:

- 1. S is empty; trivially true.
- 2. v.d = 0, which is the shortest path.
- 3. S is empty, so no edges leave it.

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value;Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 }
else if (f.d+weight(f,w) < w.d) {

w.d =
$$f.d+weight(f,w)$$
;

For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

- At each iteration:
 - 1. Theorem says f.d is the shortest path, so it can safely move to S
 - 2. Updating w.d maintains Part 2 of the invariant.
 - 3. Each neighbor is either already in F or gets moved there.

Questions?

Drawing Graphs

• The same graph can be drawn (infinitely!) many different ways.

Planarity

• If a graph can be drawn without crossing edges, it is planar.

Detecting Planarity

A subgraph of a graph is a graph whose vertex and edge sets are subsets of the larger graph's.

- Elements of the edge subset can only contain nodes in the vertex subset.
- There's a (non-obvious) theorem that says a graph is planar if and only if it does not contain* one of these as a subgraph:

*The definition of "contain" is slightly more general than having one of these directly as a subgraph.

DAGs

• A DAG, or Directed Acyclic Graph is a... graph that is directed and acyclic.

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

- How do we tell if a directed graph is acyclic?
 - If a node has indegree 0, it can't be part of a cycle.
 - Edges coming from that node also can't be part of a cycle.

Algorithm:

while there is a node with indegree 0:

delete the node and all edges coming from it

Topological Sort

Topological sort (or toposort):

i = 0

while there is a node with indegree 0:

delete* the node and all edges coming from it

label* the deleted node i

increment i

Topological Sort

Topological sort (or toposort):

i = 0

while there is a node with indegree 0:

delete* the node and all edges coming from it

label* the deleted node i

increment i

if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don't want to actually modify the graph. We'll need to store extra data with nodes and edges, and possibly overlay additional data structures to make it efficient.

Topological Sort

• Here are the labels we applied to the example graph:

- Property: all edges go from a lower-numbered node to a higher-numbered node.
- Useful for dependency resolution, job scheduling,
- Ordering is not necessarily unique: could have chosen from among multiple nodes with indegree 0.

Tensorflow Computation Graphs

z: tensor of the final result

slide credit: O'Reilly Media, Python Machine Learning