
CSCI 241
Lecture 21


Dijkstra Proof of Correctness

More Graph Stuff, MSTs



Announcements
• Extra office hours are a possibility tomorrow if 

there’s demand.


• Final exam study guide coming soon.


• Same as midterm: it’s just the Goals from each lecture.


• Final exam:


• 3/18 10:30am-12:30pm


• You’ll be allowed two 2-sided 8.5x11 sheets of hand-written 
notes.



Goals
• See a proof of correctness of Dijkstra’s 

algorithm.


• Know what it means for a graph to be 
planar


• Know the definition of a Directed Acyclic 
Graph (DAG) and how to check whether a 
graph is a DAG using Topological Sort.



Dĳkstra’s Shortest Paths: 
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes



The next slide is so important, 
I’m going to show it to you 

again.



Implementing Dĳkstra 
Efficiently (A4)

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}

1. Store Frontier in a min-heap 
priority queue with d-values as 
priorities.


2. To efficiently iterate over 
neighbors, use an adjacency 
list graph representation.


3. Could store w.d and w.bp in 
Node class; in A4, we use a 
HashMap<Node,PathData>


4. No need to explicitly store 
Settled or Unexplored sets: 
  a node is in S or F iff it is in 
  the map.
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S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
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            w.bp = f
      }
   }
}

4. No need to explicitly store 
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F, 

it must be in Unexplored.

The only time we need to check 
membership in S is here. 

therefore,

we haven’t found a path to it. 

therefore,

it has no d or bp yet.

therefore,

it isn’t in the map!





Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a 

sequence of locally optimal moves, which 
results in the globally optimal solution.


• Most algorithms don’t work like this - need to prove 
that it results in the global optimum.


• Specifically: It is not obvious that there 
cannot still be a shorter path to the Frontier 
node with smallest d-value.



Proof of Correctness: 
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:


1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only 
settled nodes (except perhaps for f) and f.d is the length of the 
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier 
F

Settled 
S

Unexplored

f



Proof of Correctness: 
Theorem

Theorem: For a node f in the Frontier 
with minimum d value (over all nodes in 
the Frontier), f.d is the shortest-path 
distance from v to f. 
Proof: Show that any other path from v 
to if has length >= f.d

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the 
shortest distance from v to v.
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Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all 

settled nodes except f, and f.d is the length of such a path.
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Any other v-f path must either be longer or go through another 
frontier node g then arrive at f: fv g
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Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all 

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another 
frontier node g then arrive at f:

d.f <= d.g, 

so that path cannot be shorter

fv g



Proof of Correctness: 
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
path contains only settled nodes (except 
perhaps for f) and f.d is the length of the 
shortest such path


3. All edges leaving S go to F (or: no edges 
from S to Unexplored)
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At initialization: 

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.



Proof of Correctness: 
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
path contains only settled nodes (except 
perhaps for f) and f.d is the length of the 
shortest such path


3. All edges leaving S go to F (or: no edges 
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    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
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            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.



Questions?



Drawing Graphs
• The same graph can be drawn (infinitely!) 

many different ways.
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V = {1,2,3,4,5,6} 

E = {(1,2), (2,5), (3,5)


(4,5), (5,6)}



Planarity
• If a graph can be drawn without crossing 

edges, it is planar.
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Detecting Planarity

• There’s a (non-obvious) theorem that says a 
graph is planar if and only if it does not 
contain* one of these as a subgraph:

K5
K3,3

A subgraph of a graph is a graph whose vertex and edge 
sets are subsets of the larger graph’s. 

• Elements of the edge subset can only contain nodes in the vertex subset.

*The definition of 
“contain” is slightly more 
general than having one 
of these directly as a 
subgraph.



DAGs
• A DAG, or Directed Acyclic Graph is a…

graph that is directed and acyclic.
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Is this a DAG?
• How do we tell if a directed graph is acyclic?


• If a node has indegree 0, it can’t be part of a cycle.


• Edges coming from that node also can’t be part of a cycle.


Algorithm:


    while there is a node with indegree 0:


       delete the node and all edges coming from it


    if the graph is empty, the original graph was a DAG
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Is this a DAG?
• How do we tell if a directed graph is acyclic?
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• Edges coming from that node also can’t be part of a cycle.


Algorithm:


    while there is a node with indegree 0:


       delete the node and all edges coming from it


    if the graph is empty, the original graph was a DAG

E

FF



Is this a DAG?
• How do we tell if a directed graph is acyclic?
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Topological Sort
Topological sort (or toposort):

    i = 0


    while there is a node with indegree 0:


       delete* the node and all edges coming from it


       label* the deleted node i


       increment i


    if the graph is empty, the original graph was a DAG



Topological Sort
Topological sort (or toposort):

    i = 0


    while there is a node with indegree 0:


       delete* the node and all edges coming from it


       label* the deleted node i


       increment i


    if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don’t want to actually modify the graph. 
We’ll need to store extra data with nodes and edges, and possibly overlay 
additional data structures to make it efficient. 



Topological Sort
• Here are the labels we applied to the example graph:


• Property: all edges go from a lower-numbered node 
to a higher-numbered node.


• Useful for dependency resolution, job scheduling, 


• Ordering is not necessarily unique: could have 
chosen from among multiple nodes with indegree 0.
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Tensorflow Computation Graphs

slide credit: O’Reilly Media, Python Machine Learning


