Whatcom

o E Kul/q? |
Community College %%, |
Dey
o pakerview Rd E Bakerview Rd
Bellis Fair O
Bellingham Golf
4, and Country Club
{/”’n, l
%, 2
7,,1 g
|
%
4
8 Barkley Blvd o Barkley Village
&
= 15 min .
4.8 miles = 11 min
1 5.5 miles
7.) .\‘\\
%, o, Mp‘
Ve L A
o> (%) Y
< g 5
9, I
4 ‘s : lowa St
= 14 min [\3%, ||
5.6 miles QY
Bellingham !
F
I;m»w.:y Dr
J
Western Washingtong
University
Boulevard

CSCI 241

Lecture 19
Dijkstra’s Single-Source Shortest Paths Algorithm

Announcements

A4 out today

e |’ll post full slides for Dijkstra even though
we won’t get through all of them today.

Goals

e Know how to determine whether a graph is connected
e Know the definition of connected components.

e Understand and be able to implement graph traversal/
search algorithms:

e Depth-first search
e Breadth-first search
e Know what a weighted graph is.

e Understand the intuition behind Dijkstra’s shortest
paths algorithm.

e Be able to execute Dijkstra’s algorithm manually on a
graph.

Graph Terminology:
Adjacency, Degree

Two vertices are adjacent if they are connected by an edge

Nodes u and v are called the source and sink of the directed
edge (u, v)

Nodes u and v are endpoints of an edge (u, v) (directed or
undirected)

The outdegree of a vertex u in a directed graph is the number
of edges for which u is the source

The indegree of a vertex v in a directed graph is the number
of edges for which v is the sink

The degree of a vertex u in an undirected graph is the
number of edges of which « is an endpoint

Graph Terminology

e A path is a sequence of vertices
where each consecutive pair are
adjacent.

* |In a directed graph, paths must follow the
direction of the edges.

A cycle is a path that ends where it
started, e.g.: X, v, z, X

e A graph is acyclic if it has no cycles.

A

Path A,C,D
Acyclic

Graph Terminology

e A graph is connected if there is a
path between every pair of nodes.

* A directed graph is strongly connected if there
Is a directed path between all pairs of nodes.

* A directed graph is weakly connected if the
graph becomes connected when all edges are
converted to undirected edges.

Not strongly
connected

Not weakly
e A graph can have multiple connected connected
components: subsets of the vertices
and edges that are connected.

Trees vs Graphs

* Trees are graphs!

e A tree is an undirected graph with exactly 1
path between all pairs of nodes.
/

¢ 00

Many problems are easy in trees and harder in graphs.

e Implication: no cycles!

©-
O

V ={1,2,3,4,5,6)
E ={(1,2), (2,5), (3,5)
(4,9), (5,6)}

Graph terminology:
Lightning Round!

Graph G
A:No B: Yes a\ejpa
e Is graph G acyclic? e\ /
* |s there a path from 3
to 5 in graph H?

Graph H

-

e |s graph H directed?

O

e Is (1,2) an edge in H?

Graph terminology:
Lightning Round!

Graph G
 What’s the degree of node P
5 in graph G?
A:1 B:2 C:3 D:4 e\ /

e What is IVl in graph G?
A:3 B:4 C:5 D:6

Graph H

e What is |IEl in graph H?
A:4 B:5 C:6 D:7

-

O

e |Is H connected?
A:no B:yes

Back to graph traversals...

Weighted Graphs

* Like a normal graph, but edges have weights.

 Formally: a graph (V,E) with an accompanying weight
function w: E -> R

* may be directed or undirected.

* Informally: label edges with their weights

* Representation: Q

e adjacency list - store weight of (u,v) with v the node in u’s list

e adjacency matrix - store weight in matrix entry for (u,v)

Paths in Weighted Graphs

* The length (or weight) of a path in a weighted
graph is the sum of the edge weights along
that path.

e ABCD: What’s the
length of the shortest
path from 3 to 67
A 7

B. 8
C. 9
D. 1

0

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest paths

e Example: if the shortest path from u to w goes
through v, then

e the part of that path from u to v is the shortest
path from u to v.

e |f there were some better path u..v, that would
also be part of a better way to get from u to w.

Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest
paths

e Conseguence: a candidate shortest path
from start node s to some node v’s neighbor
w is the shortest path from to v + the edge
weight from v to w.

shortest path u..v = v.d

"0 0

Dijkstra’s Shortest Paths:
Intuition

* |Intuition: explore nodes like BFS, but in order of path length
iInstead of number of hops.

* There are three kinds of nodes:
e Settled - nodes for which we know the actual shortest path.

e Frontier - nodes that have been visited but we don'’t
necessarily have their actual shortest path

* Unexplored - all other nodes.

* Each node n keeps track of n.d, the length of the shortest
known known path from start.

* \WWe may discover a shorter path to a frontier node than the one
we’ve found already - if so, update n.d.

Dijkstra’s Shortest Paths:

Cartoon
settled frontier unexplored

During:

S

- <:E§;ii;:/4l;;ii;i£:> <:::> <:5i§é;>
unrea nodes

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length
add 1t to frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

ttled
settle A’Q\\W_d = u.d + wi(u,w)
6 o0 e

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e 0 Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

settled o
é — L

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set:

Frontier set:
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {}

Frontier set: {4}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 4
1f we’ve never seen w before: .
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {0}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: O
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1, 2}
shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1)

Frontier set: {2}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 1
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0, 1)

Frontier set: {2, 3}
shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, O, 1, 2}

Frontier set: {3}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 2
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:

Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

Settled set: {4, O, 1, 2}

Frontier set: {3}

move the node f with smallest d from F to S
For each neighbor w of £

. . f: 2
1f we’ve never seen w before:

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’s shortest path length

2.

+Wt(23)<3d
/<8

shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 3
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Unanswered Questions

e Does this always work??

e How do you get the path, not just its
length?

e How do you implement it efficiently?

e \What’s the runtime?

