
CSCI 241
Lecture 19

Dijkstra’s Single-Source Shortest Paths Algorithm

Announcements
• A4 out today

• I’ll post full slides for Dijkstra even though
we won’t get through all of them today.

Goals
• Know how to determine whether a graph is connected

• Know the definition of connected components.

• Understand and be able to implement graph traversal/

search algorithms:

• Depth-first search

• Breadth-first search

• Know what a weighted graph is.

• Understand the intuition behind Dijkstra’s shortest

paths algorithm.

• Be able to execute Dijkstra’s algorithm manually on a

graph.

Graph Terminology:
Adjacency, Degree

• Two vertices are adjacent if they are connected by an edge

• Nodes u and v are called the source and sink of the directed
edge (u, v)

• Nodes u and v are endpoints of an edge (u, v) (directed or
undirected)

• The outdegree of a vertex u in a directed graph is the number
of edges for which u is the source

• The indegree of a vertex v in a directed graph is the number
of edges for which v is the sink

• The degree of a vertex u in an undirected graph is the
number of edges of which u is an endpoint

Graph Terminology
• A path is a sequence of vertices

where each consecutive pair are
adjacent.

• In a directed graph, paths must follow the
direction of the edges.

• A cycle is a path that ends where it
started, e.g.: x, y, z, x

• A graph is acyclic if it has no cycles.

A

B C

DE

Path A,C,D
Acyclic

Graph Terminology
• A graph is connected if there is a

path between every pair of nodes.

• A directed graph is strongly connected if there
is a directed path between all pairs of nodes.

• A directed graph is weakly connected if the
graph becomes connected when all edges are
converted to undirected edges.

• A graph can have multiple connected
components: subsets of the vertices
and edges that are connected.

A

B C

DE

Not strongly
connected
Not weakly
connected

Trees vs Graphs
• Trees are graphs!

• A tree is an undirected graph with exactly 1
path between all pairs of nodes.

• Implication: no cycles!

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6}

E = {(1,2), (2,5), (3,5)

(4,5), (5,6)}

Many problems are easy in trees and harder in graphs.

Graph terminology:
Lightning Round!

A: No B: Yes

• Is graph G acyclic?

• Is there a path from 3
to 5 in graph H?

• Is graph H directed?

• Is (1,2) an edge in H?

3

2

6

5
4

1

3

2

6

5

4

1

Graph G

Graph H

Graph terminology:
Lightning Round!

• What’s the degree of node
5 in graph G? 
A: 1 B: 2 C: 3 D: 4

• What is |V| in graph G? 
A: 3 B: 4 C: 5 D: 6

• What is |E| in graph H? 
A: 4 B: 5 C: 6 D: 7

• Is H connected?  
 A: no B: yes

3

2

6

5

4

1

Graph G

Graph H

3

2

6

5
4

1

Back to graph traversals…

Weighted Graphs
• Like a normal graph, but edges have weights.

• Formally: a graph (V,E) with an accompanying weight
function w: E -> ℝ

• may be directed or undirected.

• Informally: label edges with their weights

• Representation:

• adjacency list - store weight of (u,v) with v the node in u’s list

• adjacency matrix - store weight in matrix entry for (u,v)

A

B C

D
E

6 6
5

3
4

Paths in Weighted Graphs
• The length (or weight) of a path in a weighted

graph is the sum of the edge weights along
that path.

3

2

6

5

4

1
2

2

33
1

5

• ABCD: What’s the
length of the shortest
path from 3 to 6?

A. 7

B. 8

C. 9

D. 10

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

0 1

1

223

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

0 2

2

75
6!

Dĳkstra’s Shortest Paths:
Subpaths

• Fact: subpaths of shortest paths are shortest paths

• Example: if the shortest path from u to w goes
through v, then

• the part of that path from u to v is the shortest
path from u to v.

• if there were some better path u..v, that would
also be part of a better way to get from u to w.

u v w… …

Dĳkstra’s Shortest Paths:
Subpaths

• Fact: subpaths of shortest paths are shortest
paths

• Consequence: a candidate shortest path
from start node s to some node v’s neighbor
w is the shortest path from to v + the edge
weight from v to w.

u v w…
shortest path u..v = v.d

wt(v,w)

Dĳkstra’s Shortest Paths:
Intuition

• Intuition: explore nodes like BFS, but in order of path length
instead of number of hops.

• There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest path.

• Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

• Unexplored - all other nodes.

• Each node n keeps track of n.d, the length of the shortest
known known path from start.

• We may discover a shorter path to a frontier node than the one
we’ve found already - if so, update n.d.

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

settled

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 ?

Best

known

distances:

Settled set:

Frontier set:

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {}

Frontier set: {4}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4}

Frontier set: {0}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  
w: 0

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {1}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 1

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {1, 2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 2

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1}

Frontier set: {2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1}

Frontier set: {2, 3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1  
w: 3

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 2

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 7

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d
7 < 8

f: 2
w: 3

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 7

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2, 3}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)
Empty => done!

f: 3

Unanswered Questions
• Does this always work?

• How do you get the path, not just its
length?

• How do you implement it efficiently?

• What’s the runtime?

