
CSCI 241
Lecture 19


Dijkstra’s Single-Source Shortest Paths Algorithm



Announcements
• A4 out today


• I’ll post full slides for Dijkstra even though 
we won’t get through all of them today.



Goals
• Know how to determine whether a graph is connected 

• Know the definition of connected components.

• Understand and be able to implement graph traversal/

search algorithms:

• Depth-first search

• Breadth-first search


• Know what a weighted graph is.

• Understand the intuition behind Dijkstra’s shortest 

paths algorithm.

• Be able to execute Dijkstra’s algorithm manually on a 

graph.



Graph Terminology: 
Adjacency, Degree

• Two vertices are adjacent if they are connected by an edge

• Nodes u and v are called the source and sink of the directed 
edge (u, v)

• Nodes u and v are endpoints of an edge (u, v) (directed or 
undirected)

• The outdegree of a vertex u in a directed graph is the number 
of edges for which u is the source

• The indegree of a vertex v in a directed graph is the number 
of edges for which v is the sink

• The degree of a vertex u in an undirected graph is the 
number of edges of which u is an endpoint 



Graph Terminology
• A path is a sequence of vertices 

where each consecutive pair are 
adjacent.


• In a directed graph, paths must follow the 
direction of the edges.


• A cycle is a path that ends where it 
started, e.g.: x, y, z, x


• A graph is acyclic if it has no cycles.
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Graph Terminology
• A graph is connected if there is a 

path between every pair of nodes.


• A directed graph is strongly connected if there 
is a directed path between all pairs of nodes.


• A directed graph is weakly connected if the 
graph becomes connected when all edges are 
converted to undirected edges.


• A graph can have multiple connected 
components: subsets of the vertices 
and edges that are connected.
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Trees vs Graphs
• Trees are graphs!


• A tree is an undirected graph with exactly 1 
path between all pairs of nodes. 


• Implication: no cycles!
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Many problems are easy in trees and harder in graphs.



Graph terminology: 
Lightning Round!

A: No      B: Yes


• Is graph G acyclic?


• Is there a path from 3 
to 5 in graph H? 


• Is graph H directed?


• Is (1,2) an edge in H?
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Graph terminology: 
Lightning Round!

• What’s the degree of node 
5 in graph G? 
A: 1  B: 2   C: 3   D: 4


• What is |V| in graph G? 
A: 3  B: 4   C: 5   D: 6


• What is |E| in graph H? 
A: 4   B: 5   C: 6   D: 7


• Is H connected?  
     A: no    B: yes
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Back to graph traversals…



Weighted Graphs
• Like a normal graph, but edges have weights.


• Formally: a graph (V,E) with an accompanying weight 
function w: E -> ℝ


• may be directed or undirected.


• Informally: label edges with their weights


• Representation:


• adjacency list - store weight of (u,v) with v the node in u’s list


• adjacency matrix - store weight in matrix entry for (u,v)
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Paths in Weighted Graphs
• The length (or weight) of a path in a weighted 

graph is the sum of the edge weights along 
that path.
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• ABCD: What’s the 
length of the shortest 
path from 3 to 6? 

A. 7

B. 8

C. 9

D. 10



• Perform a breadth-first search (that’s it!)


• BFS visits nodes in order of “hop distance”, 
or path length!


• BFS(1):

Computing Shortest Paths 
in Unweighted Graphs
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Dĳkstra’s Shortest Paths: 
Subpaths

• Fact: subpaths of shortest paths are shortest paths


• Example: if the shortest path from u to w goes 
through v, then


• the part of that path from u to v is the shortest 
path from u to v.


• if there were some better path u..v, that would 
also be part of a better way to get from u to w.

u v w… …



Dĳkstra’s Shortest Paths: 
Subpaths

• Fact: subpaths of shortest paths are shortest 
paths


• Consequence: a candidate shortest path 
from start node s to some node v’s neighbor 
w is the shortest path from to v + the edge 
weight from v to w.

u v w…
shortest path u..v = v.d

wt(v,w)



Dĳkstra’s Shortest Paths: 
Intuition

• Intuition: explore nodes like BFS, but in order of path length 
instead of number of hops. 

• There are three kinds of nodes:


• Settled - nodes for which we know the actual shortest path.


• Frontier - nodes that have been visited but we don’t 
necessarily have their actual shortest path


• Unexplored - all other nodes.


• Each node n keeps track of n.d, the length of the shortest 
known known path from start.


• We may discover a shorter path to a frontier node than the one 
we’ve found already - if so, update n.d.



Dĳkstra’s Shortest Paths: 
Cartoon
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Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length



Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
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  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
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s f w…
f.d

wt(f,w)



Dĳkstra’s Shortest Paths: 
High-Level Algorithm
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Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)
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settled
u.d + wt(u,w)

wt(f,w)



Dĳkstra’s Shortest Paths: 
Execution
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length to f.d + wt(f,w)
      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

shortest-paths(4)
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Execution
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Dĳkstra’s Shortest Paths: 
Execution
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Dĳkstra’s Shortest Paths: 
Execution
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f: 3



Unanswered Questions
• Does this always work?


• How do you get the path, not just its 
length?


• How do you implement it efficiently?


• What’s the runtime?


