CSCI 241

Lecture 19
Dijkstra’s Single-Source Shortest Paths Algorithm
Announcements

• A4 out today

• I’ll post full slides for Dijkstra even though we won’t get through all of them today.
Goals

• Know how to determine whether a graph is connected
• Know the definition of connected components.
• Understand and be able to implement graph traversal/search algorithms:
 • Depth-first search
 • Breadth-first search
• Know what a weighted graph is.
• Understand the intuition behind Dijkstra’s shortest paths algorithm.
• Be able to execute Dijkstra’s algorithm manually on a graph.
Graph Terminology: Adjacency, Degree

- Two vertices are *adjacent* if they are connected by an edge.
- Nodes u and v are called the *source* and *sink* of the *directed* edge (u, v).
- Nodes u and v are *endpoints* of an edge (u, v) (directed or undirected).
- The *outdegree* of a vertex u in a *directed* graph is the number of edges for which u is the source.
- The *indegree* of a vertex v in a *directed* graph is the number of edges for which v is the sink.
- The *degree* of a vertex u in an *undirected* graph is the number of edges of which u is an endpoint.
Graph Terminology

- A **path** is a sequence of vertices where each consecutive pair are adjacent.
 - In a directed graph, paths must follow the direction of the edges.
- A **cycle** is a path that ends where it started, e.g.: x, y, z, x
- A graph is **acyclic** if it has no cycles.
Graph Terminology

• A graph is **connected** if there is a path between every pair of nodes.

 • A directed graph is **strongly connected** if there is a directed path between all pairs of nodes.

 • A directed graph is **weakly connected** if the graph becomes connected when all edges are converted to undirected edges.

• A graph can have multiple **connected components**: subsets of the vertices and edges that are connected.
Trees vs Graphs

• Trees are graphs!

• A tree is an **undirected graph** with exactly 1 path between all pairs of nodes.

• Implication: no **cycles**!

\[
V = \{1,2,3,4,5,6\} \\
E = \{(1,2), (2,5), (3,5), (4,5), (5,6)\}
\]

Many problems are easy in trees and harder in graphs.
Graph terminology: Lightning Round!

A: No B: Yes

• Is graph G acyclic?

• Is there a path from 3 to 5 in graph H?

• Is graph H directed?

• Is (1,2) an edge in H?
Graph terminology: Lightning Round!

- What’s the degree of node 5 in graph G?
 A: 1 B: 2 C: 3 D: 4

- What is $|V|$ in graph G?
 A: 3 B: 4 C: 5 D: 6

- What is $|E|$ in graph H?
 A: 4 B: 5 C: 6 D: 7

- Is H connected?
 A: no B: yes
Back to graph traversals...
Weighted Graphs

- Like a normal graph, but edges have weights.

- Formally: a graph \((V,E)\) with an accompanying weight function \(w: E \rightarrow \mathbb{R}\).

 - may be directed or undirected.

- Informally: label edges with their weights.

- Representation:

 - adjacency list - store weight of \((u,v)\) with \(v\) the node in \(u\)'s list

 - adjacency matrix - store weight in matrix entry for \((u,v)\)
Paths in Weighted Graphs

- The length (or weight) of a path in a weighted graph is the sum of the edge weights along that path.

- **ABCD**: What’s the length of the shortest path from 3 to 6?

 A. 7
 B. 8
 C. 9
 D. 10
Perform a breadth-first search (that’s it!)

BFS visits nodes in order of “hop distance”, or path length!

BFS(1):

Computing Shortest Paths in Unweighted Graphs
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Dijkstra’s Shortest Paths: Subpaths

- Fact: **subpaths** of shortest paths are shortest paths

- Example: if the shortest path from u to w goes through v, then
 - the part of that path from u to v is the shortest path from u to v.
 - if there were some better path u..v, that would also be part of a better way to get from u to w.
Dijkstra’s Shortest Paths: Subpaths

- **Fact:** subpaths of shortest paths are shortest paths

- **Consequence:** a candidate shortest path from start node s to some node v’s neighbor w is the shortest path from to v + the edge weight from v to w.

![Diagram of shortest path](image)
Dijkstra’s Shortest Paths: Intuition

- **Intuition**: explore nodes like BFS, but in order of path length instead of number of hops.

- There are three kinds of nodes:
 - **Settled** - nodes for which we know the actual shortest path.
 - **Frontier** - nodes that have been visited but we don’t necessarily have their actual shortest path.
 - **Unexplored** - all other nodes.

- Each node \(n \) keeps track of \(n.d \), the length of the shortest known known path from start.

- We may discover a shorter path to a frontier node than the one we’ve found already - if so, update \(n.d \).
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:

settled

frontier

unexplored

unreachable nodes
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

\[
\begin{align*}
\text{settled} & \quad \cdots \quad u \quad \cdots \quad w \\
\text{s} & \quad \rightarrow \quad \cdots \quad \rightarrow \quad f & \quad \rightarrow \quad \rightarrow \quad w \\
\text{w.d} & = \text{u.d} + \text{wt(u,w)}
\end{align*}
\]
Dijkstra’s Shortest Paths: High-Level Algorithm

- Initialize Settled to empty
- Initialize Frontier to the start node
- While the frontier isn’t empty:
 - move the node f with smallest d from F to S
 - For each neighbor w of f:
 - if we’ve never seen w before:
 - set its path length
 - add it to frontier
 - else if the path to w via f is shorter:
 - update w’s shortest path length

```
s → ... → f → w

f.d + wt(f,w)
```

```
s → ... → u → w
wu.d = u.d + wt(u,w)
```
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

 move the node f with smallest d from F to S

For each neighbor w of f:

 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier

 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set:

Frontier set:

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: {}
Frontier set: {4}

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: \{4\}

Frontier set: \{\}

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
- For each neighbor \(w \) of \(f \):
 - if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
 - else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

\[
\text{shortest-paths}(4)\]
Dijkstra’s Shortest Paths:
Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

move the node f with smallest d from F to S

For each neighbor w of f:

if we’ve never seen w before:
set its path length to f.d + wt(f,w)
add w to the frontier

else if the path to w via f is shorter:
update w’s shortest path length

Settled set: \{4\}
Frontier set: \{0\}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: \{4, 0\}

Frontier set: \{

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:

1. move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
2. For each neighbor \(w \) of \(f \):
 - if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
 - else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: \{4, 0\}
Frontier set: \{1\}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0}
Frontier set: {1, 2}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- move the node f with smallest d from F to S
- For each neighbor w of f:
 - if we’ve never seen w before:
 - set its path length to f.d + wt(f,w)
 - add w to the frontier
 - else if the path to w via f is shorter:
 - update w’s shortest path length

Settled set: {4, 0, 1}
Frontier set: {2}
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length to \(f.d + wt(f,w) \)
 add \(w \) to the frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

Settled set: \{4, 0, 1\}

Frontier set: \{2, 3\}
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- move the node \(f \) with smallest \(d \) from \(F \) to \(S \)

For each neighbor \(w \) of \(f \):

- if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
- else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

Settled set: \{4, 0, 1, 2\}

Frontier set: \{3\}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

2.d + wt(2,3) < 3.d
7 < 8

Settled set: {4, 0, 1, 2}
Frontier set: {3}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- **move the node f with smallest d from F to S**

For each neighbor w of f:

- if we’ve never seen w before:
 - set its path length to f.d + wt(f,w)
 - add w to the frontier
- else if the path to w via f is shorter:
 - update w’s shortest path length

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!
Unanswered Questions

• Does this always work?

• How do you get the path, not just its length?

• How do you implement it efficiently?

• What’s the runtime?