

Lecture 19 Dijkstra's Single-Source Shortest Paths Algorithm

Announcements

- A4 out today
- I'll post full slides for Dijkstra even though we won't get through all of them today.

Goals

- Know how to determine whether a graph is connected
- Know the definition of connected components.
- Understand and be able to implement graph traversal/ search algorithms:
 - Depth-first search
 - Breadth-first search
- Know what a weighted graph is.
- Understand the intuition behind Dijkstra's shortest paths algorithm.
- Be able to execute Dijkstra's algorithm manually on a graph.

Graph Terminology: Adjacency, Degree

- Two vertices are adjacent if they are connected by an edge
- Nodes u and v are called the source and sink of the directed edge (u, v)
- Nodes u and v are endpoints of an edge (u, v) (directed or undirected)
- The outdegree of a vertex *u* in a directed graph is the number of edges for which *u* is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex *u* in an **undirected** graph is the number of edges of which *u* is an endpoint

Graph Terminology

- A path is a sequence of vertices where each consecutive pair are adjacent.
 - In a directed graph, paths must follow the direction of the edges.
- A cycle is a path that ends where it started, e.g.: x, y, z, x
- A graph is acyclic if it has no cycles.

Graph Terminology

- A graph is connected if there is a path between every pair of nodes.
 - A directed graph is strongly connected if there is a directed path between all pairs of nodes.
 - A directed graph is weakly connected if the graph becomes connected when all edges are converted to undirected edges.
- A graph can have multiple connected components: subsets of the vertices and edges that are connected.

connected

Not weakly

connected

Trees vs Graphs

- Trees are graphs!
- A tree is an undirected graph with exactly 1 path between all pairs of nodes.
- Implication: no cycles!

Many problems are easy in trees and harder in graphs.

Graph terminology: Lightning Round!

- A: No B: Yes
- Is graph G acyclic?
- Is there a path from 3 to 5 in graph H?
- Is graph H directed?
- Is (1,2) an edge in H?

Graph terminology: Lightning Round!

- What's the degree of node 5 in graph G?
 A: 1 B: 2 C: 3 D: 4
- What is IVI in graph G?
 A: 3 B: 4 C: 5 D: 6
- What is IEI in graph H? A: 4 B: 5 C: 6 D: 7
- Is H connected?
 A: no B: yes

Back to graph traversals...

Weighted Graphs

- Like a normal graph, but edges have weights.
- Formally: a graph (V,E) with an accompanying weight function w: E -> \mathbb{R}
 - may be directed or undirected.
- Informally: label edges with their weights
- Representation:

6

5

6

В

- adjacency list store weight of (u,v) with v the node in u's list
- adjacency matrix store weight in matrix entry for (u,v)

Paths in Weighted Graphs

- The length (or weight) of a path in a weighted graph is the sum of the edge weights along that path.
- **ABCD**: What's the length of the shortest path from 3 to 6?
 - A. 7
 - B. 8
 - C. 9
 - D. 10

Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!

Computing Shortest Paths in Weighted Graphs

BFS doesn't visit nodes in order of shortest path length:

Dijkstra's Shortest Paths: Subpaths

• Fact: subpaths of shortest paths are shortest paths

- Example: if the shortest path from u to w goes through v, then
 - the part of that path from u to v is the shortest path from u to v.
 - if there were some better path u..v, that would also be part of a better way to get from u to w.

Dijkstra's Shortest Paths: Subpaths

- Fact: subpaths of shortest paths are shortest paths
- Consequence: a candidate shortest path from start node s to some node v's neighbor w is the shortest path from to v + the edge weight from v to w.

shortest path u..v = v.d

$$u \rightarrow \cdots \rightarrow v \xrightarrow{wt(v,w)} w$$

Dijkstra's Shortest Paths: Intuition

- Intuition: explore nodes like BFS, but in order of path length instead of number of hops.
- There are three kinds of nodes:
 - Settled nodes for which we know the actual shortest path.
 - Frontier nodes that have been visited but we don't necessarily have their actual shortest path
 - Unexplored all other nodes.
- Each node n keeps track of n.d, the length of the shortest known known path from start.
- We may discover a shorter path to a frontier node than the one we've found already - if so, update n.d.

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length add it to frontier else if the path to w via f is shorter: update w's shortest path length

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: f.d set its path length S add it to frontier else if the path to w via f is shorter: update w's shortest path length

Best known distances:

Node	d
0	?
1	?
2	?
3	?
4	?

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set:

Frontier set:

Best known distances: Node d 0 ? 1 ? 2 ? 3 ? 4 0

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {}

Frontier set: {4}

Best			
known			
distances:			
Node	d		
0	?		
1	?		
2	?		
3	?		
4	0		

Settled set: {4}

Frontier set: {}

Best		
-	n	Initialize Settled to empty
know		Initialize Frontier to the start node
distar	nces:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
0	2	For each neighbor w of f: f: 4
U	_	if we've never seen w before: w:0
1	?	<pre>set its path length to f.d + wt(f,w)</pre>
2	?	add w to the frontier
3	?	else if the path to w via f is shorter:
J		update w's shortest path length
	o ed set tier set	
		<pre>shortest-paths(4)</pre>

Best			
known			
distances:			
Node	d		
0	2		
1	?		
2	?		
3	?		
4	0		

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: f: 0 if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {4, 0}

Frontier set: {}

Best		
-		Initialize Settled to empty
know	'n	Initialize Frontier to the start node
dista	nces:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
		For each neighbor w of f: f: 0
0	2	if we've never seen w before: w:1
1	5	set its path length to f.d + wt(f,w)
2	?	add w to the frontier
3	?	else if the path to w via f is shorter:
		update w's shortest path length
4	0	
Sett	led set	3
Fron	tier set	:{1} shortest-paths(4)

Best		Initialize Settled to empty
know	n	Initialize Frontier to the start node
distar	nces:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
0	2	For each neighbor w of f: f: 0
		if we've never seen w before: w:2
1	5	<pre>set its path length to f.d + wt(f,w)</pre>
2	6	add w to the frontier
3	?	else if the path to w via f is shorter:
		update w's shortest path length
4	0	
		$: \{4, 0\}$
TIOIN		
		<pre>shortest-paths(4)</pre>

Best known			
distances:			
Node	d		
0	2		
1	5		
2	6		
3	8		
4	0		

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: f: 1 if we've never seen w before: f: 1 if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {4, 0, 1}

Frontier set: {2}

Best		Initialize Settled to empty
know	n	Initialize Frontier to the start node
distar	ices:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
0	2	For each neighbor w of f: f: 1
		if we've never seen w before: w: 3
1	5	<pre>set its path length to f.d + wt(f,w)</pre>
2	6	add w to the frontier
3	8	else if the path to w via f is shorter:
		update w's shortest path length
4	0	
		: {4, 0, 1} : {2, 3} 2 1 4 2 1 3 3 3
		<pre>shortest-paths(4)</pre>

Best known			
distances:			
Node	d		
0	2		
1	5		
2	6		
3	8		
4	0		

Settled set: {4, 0, 1, 2}

Frontier set: {3}

distances: While	Initia Initia While	
Node d		
0 2 FO:	r i:	
1 5		
2 6		
3 7	e.	
4 0		

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!

shortest-paths(4)

4

Unanswered Questions

- Does this always work?
- How do you get the path, not just its length?
- How do you implement it efficiently?
- What's the runtime?