

CSCI 241

Lecture 18 Intro to Graphs; Graph Representation; Graph Traversals

Announcements

- A2 grades are out.
 - Please pull the grading branch to see your feedback.
 - As usual, you can resubmit once for half unit test credit back.
- A3 is due Wednesday
 - My solution has 111 more lines than the skeleton.
 - The concepts-to-code ratio is high.
- A4 out Wednesday, due the following Wednesday
 - We'll cover the algorithm on Wednesday and Friday.

Happenings

Wednesday, 3/6 – <u>Peer Lecture Series: VIM Workshop</u> – 5 pm in CF 420

Wednesday, 3/6 – <u>Cybersecurity Lecture Series: Cyber and Physical</u> <u>Security Standards in the Power Industry</u> – 5 pm in CF 105

Thursday, 3/7 – <u>Elevator Speech Workshop</u> – 6 pm in CF 316

Friday, 3/8 – <u>AWC Women in Industry Panel</u> – 4 pm in AW 210

Goals

- Know the definition of a graph and basic associated terminology:
 - Node/vertex; edge/arc; directed, undirected; adjacent; (in/out-)degree; path; cycle;
- Understand how to represent a graph using:
 - adjacency list
 - adjacency matrix
- Be able to implement and analyze the runtime of simple graph operations on adjacency matrices and adjacency lists.
- Know how to implement breadth-first and depth-first graph traversals.

Graph: a bunch of points connected by lines. The lines may have directions, or not.

This is a graph:

The internet's undersea world

The edges are made of these:

Social Networks

(before they were cool)

Locke's (blue) and Voltaire's (yellow) correspondence. Only letters for which complete location information is available are shown. Data courtesy the Electronic Enlightenment Project, University of Oxford.

The USA as a graph:

Neighboring states are connected by edges.

Electrical circuit

A bigger electrical circuit

400

This is not a graph:

it is a cat.

This is a graph

that can recognize cats.

Graphs: Abstract View

K_{3,3}

Graphs, Formally

- A directed graph (digraph) is a pair (V, E) where:
 - V is a (finite) set
 - E is a set of **ordered** pairs (u, v) where u, v are in V
 - Often (not always): $u \neq v$ (i.e. no edges from a vertex to itself)
- An element in V is called a vertex or node
- Elements in E are called edges or arcs
- |V| = size of V (traditionally called n)
- |E| = size of E (traditionally called m)

An example directed graph

 $V = \{A, B, C, D, E\}$ $E = \{ (A, C), (B, A), \}$ (B, C), (C, D),(D, C)= 5

Graphs, Formally

- An undirected graph is a just like a digraph, but
 - E is a set of **un**ordered pairs (u, v) where u, v are in V

$$V = \{A, B, C, D, E\}$$

$$E = \{\{A, C\}, \{B, A\}, \{B, C\}, \{B, C\}, \{C, D\}\}$$

$$|V| = 5$$

$$|E| = 4$$

D

- An undirected graph can be converted to an equivalent directed graph:
 - Replace each undirected edge with two directed edges in opposite directions
- A directed graph can't always be converted to an undirected graph.

Graph Terminology: Adjacency, Degree

- Two vertices are adjacent if they are connected by an edge
- Nodes u and v are called the source and sink of the directed edge (u, v)
- Nodes u and v are endpoints of an edge (u, v) (directed or undirected)
- The outdegree of a vertex *u* in a **directed** graph is the number of edges for which *u* is the source
- The indegree of a vertex v in a **directed** graph is the number of edges for which v is the sink
- The degree of a vertex *u* in an **undirected** graph is the number of edges of which *u* is an endpoint

Graph Teminology: Paths, Cycles

- A path is a sequence of vertices where each consecutive pair are adjacent.
- In a directed graph, paths must follow the direction of the edges (nodes must be ordered source then sink).

Path A,C,D

- A cycle is a path that ends where it started, e.g.: x, y, z, x
- A graph is acyclic if it has no cycles.

Representing Graphs: Adjacency Lists

public class GraphNode { // fields storing information // about this node

List<GraphNode> neighbors;

Representing Graphs: Adjacency Matrix

```
public class Graph {
    boolean[][] adjacent; // size n x n
}
```

Adjacency lists:

Node: Neighbors:

Representing Graphs: Adjacency Matrix

```
public class Graph {
    boolean[][] adjacent; // size n x n
}
```

Adjacency lists:

Node: Neighbors:

Adjacency Matrix:

- 1234
- **1**0101
- 20010
- **3**0000
- 40110

Node: Neighbors:

- Let n = |V| and m = |E|; let d(u) = degree of u
- ABCD: How much space does it take to store G as an adjacency list vs. adjacency matrix?
 - A. List: O(n²+e); Matrix: O(n²)
 - B. List: O(n+e); Matrix: O(n + e)
 - C. List: O(n²); Matrix: O(n + e^2)
 - D. List: O(n+e); Matrix: O(n²)

Adjacency Matrix:

- Let n = |V| and m = |E|; let d(u) = degree of u
- ABCD: How much space does it take to store G as an adjacency list vs. adjacency matrix?
 - A. List: O(n²+e); Matrix: O(n²)
 - B. List: O(n+e); Matrix: O(n + e)
 - C. List: O(n²); Matrix: O(n + e^2)
 - D. List: O(n+e); Matrix: O(n²)

Node: Neighbors:

- Let n = |V| and m = |E|; let d(u) = degree of u
- ABCD: What's the runtime of iterating over all edges?
 - A. List: $O(n^2)$; Matrix: $O(n^2)$
 - B. List: O(n+e); Matrix: O(n²)
 - C. List: O(n + e); Matrix: O(n + e)
 - D. List: O(n+e); Matrix: O(n² + e)

Adjacency Matrix:

- Let n = |V| and m = |E|; let d(u) = degree of u
- ABCD: What's the runtime of iterating over all edges?
 - A. List: $O(n^2)$; Matrix: $O(n^2)$
 - B. List: O(n+e); Matrix: O(n²)
 - C. List: O(n + e); Matrix: O(n + e)
 - D. List: O(n+e); Matrix: O(n² + e)

Adjacency Matrix vs Adjacency List

- Reminder: n = |V| and m = |E|; let d(u) = degree of u
- Adjacency matrix:
 - Storage space: O(n²)
 - Iterate over edges: O(n²) time
 - Check if there's an edge from u to v: O(1)
 - Good for dense graphs
 - e.g., if n² is close to n², you need n² storage anyway.

Adjacency Matrix vs Adjacency List

- Reminder: n = |V| and m = |E|; let d(u) = degree of u
- Adjacency matrix:
 - Storage space: O(n²)
 - Iterate over edges: O(n²) time
 - Check if there's an edge from u to v: O(1)
 - Good for dense graphs
 - e.g., if n² is close to n², you need n² storage anyway.

Adjacency Matrix vs Adjacency List

- Reminder: n = |V| and m = |E|; let d(u) = degree of u
- Adjacency list:
 - Storage space: O(n + e)
 - Iterate over edges: O(n + e) time
 - Check if there's an edge from u to v: O(d(u))
 - Good for more sparse graphs:
 - e.g., if IEI is close to n, $n + e \sim = 2n$, which is O(n)

Node: Neighbors:

Graph Algorithms

You can take entire graduate-level courses on graph algorithms. In this class:

- Search/traversal: search for a particular node or traverse all nodes (Lab 9)
 - Breadth-first
 - Depth-first
- Shortest Paths (A4)
- Spanning trees

Graph Algorithms

You can take entire graduate-level courses on graph algorithms. In this class:

- Search/traversal: search for a particular node or traverse all nodes (Lab 9)
 - Breadth-first
 - Depth-first
- Shortest Paths (A4)
- Spanning trees