
CSCI 241
Lecture 18

Intro to Graphs; Graph Representation; Graph Traversals

Announcements
• A2 grades are out.

• Please pull the grading branch to see your feedback.

• As usual, you can resubmit once for half unit test credit back.

• A3 is due Wednesday

• My solution has 111 more lines than the skeleton.

• The concepts-to-code ratio is high.

• A4 out Wednesday, due the following Wednesday

• We’ll cover the algorithm on Wednesday and Friday.

Happenings
Wednesday, 3/6 – Peer Lecture Series: VIM Workshop – 5 pm in
CF 420

Wednesday, 3/6 – Cybersecurity Lecture Series: Cyber and Physical
Security Standards in the Power Industry – 5 pm in CF 105

Thursday, 3/7 – Elevator Speech Workshop – 6 pm in CF 316

Friday, 3/8 – AWC Women in Industry Panel – 4 pm in AW 210

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-vim-workshop&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159918121&sdata=rZA0nNfeFgWMeNIgefncCHvKvYLX%2F445reukVqmRTt8%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-cyber-and-physical-security-standards-power&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159918121&sdata=R9Z16%2BayJRGueRIuDmzNJ%2BHZBfpeXuC6cM9AkPGB5XQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-cyber-and-physical-security-standards-power&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159918121&sdata=R9Z16%2BayJRGueRIuDmzNJ%2BHZBfpeXuC6cM9AkPGB5XQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-cyber-and-physical-security-standards-power&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159918121&sdata=R9Z16%2BayJRGueRIuDmzNJ%2BHZBfpeXuC6cM9AkPGB5XQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Felevator-speech-workshop&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159928131&sdata=uv0sKNqmVZV03X1G4VwO%2FmsWVA9h3JqkDWfXSCssFNs%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fawc-women-industry-panel&data=02%7C01%7Cwehrwes%40wwu.edu%7Cce4c9ea30c4c476fe6fe08d69e9500f3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636870760159938135&sdata=x05LNlhJQbCS8IJ89KP5NmDPXX3a6uxdM67lnN4jSBs%3D&reserved=0

Goals
• Know the definition of a graph and basic associated terminology:

• Node/vertex; edge/arc; directed, undirected; adjacent; (in/out-)degree; path;
cycle;

• Understand how to represent a graph using:

• adjacency list

• adjacency matrix

• Be able to implement and analyze the runtime of simple graph
operations on adjacency matrices and adjacency lists.

• Know how to implement breadth-first and depth-first graph
traversals.

Graph: a bunch of points connected by lines.
The lines may have directions, or not.

This is a graph:

The edges are made of these:

Social Networks 
(before they were cool)

Voltaire and Benjamin Franklin

Social Networks 
(before they were cool)

The USA as a graph:
• Neighboring states are connected by edges.

Electrical circuit

A bigger electrical circuit

This is not a graph:

it is a cat.

This is a graph

that can recognize cats.

Graphs: Abstract View

K5 K3,3

Graphs, Formally
• A directed graph (digraph) is a pair (V, E) where:

• V is a (finite) set

• E is a set of ordered pairs (u, v) where u, v are in V

• Often (not always): u ≠ v (i.e. no edges from a vertex to itself)

• An element in V is called a vertex or node

• Elements in E are called edges or arcs

• |V| = size of V (traditionally called n)

• |E| = size of E (traditionally called m)

An example directed graph
A

B C

D
E

V = {A, B, C, D, E}
E = {(A, C), (B, A),

(B, C), (C, D),
(D, C)}

|V| = 5
|E| = 5

Graphs, Formally
• An undirected graph is a just like a digraph, but

• E is a set of unordered pairs (u, v) where u, v are in V

• An undirected graph can be converted to an equivalent directed
graph:

• Replace each undirected edge with two directed edges in
opposite directions

• A directed graph can’t always be converted to an undirected graph.

A

B C

D
E

V = {A, B, C, D, E}
E = {{A,C}, {B,A},

{B,C}, {C,D}}
|V| = 5
|E| = 4

Graph Terminology:
Adjacency, Degree

• Two vertices are adjacent if they are connected by an edge

• Nodes u and v are called the source and sink of the directed
edge (u, v)

• Nodes u and v are endpoints of an edge (u, v) (directed or
undirected)

• The outdegree of a vertex u in a directed graph is the number of
edges for which u is the source

• The indegree of a vertex v in a directed graph is the number of
edges for which v is the sink

• The degree of a vertex u in an undirected graph is the number
of edges of which u is an endpoint

Graph Teminology: Paths,
Cycles

• A path is a sequence of vertices where
each consecutive pair are adjacent.

• In a directed graph, paths must follow
the direction of the edges (nodes must
be ordered source then sink).

• A cycle is a path that ends where it
started, e.g.: x, y, z, x

• A graph is acyclic if it has no cycles.

A

B C

DE

Path A,C,D

Representing Graphs:
Adjacency Lists

public class GraphNode {
 // fields storing information
 // about this node

 List<GraphNode> neighbors;
}

1

2

3

4

2

3

2

4

3

Node: Neighbors: 1 2

34

Representing Graphs:
Adjacency Matrix

public class Graph {
 boolean[][] adjacent; // size n x n
}

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists:

1 2

34

Representing Graphs:
Adjacency Matrix

public class Graph {
 boolean[][] adjacent; // size n x n
}

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists: Adjacency Matrix:

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

1 2

34

• Let n = |V| and m = |E|; let d(u) = degree of u

• ABCD: How much space does it take to store G
as an adjacency list vs. adjacency matrix?

A. List: O(n2+e); Matrix: O(n2)

B. List: O(n+e); Matrix: O(n + e)

C. List: O(n2); Matrix: O(n + e2)

D. List: O(n+e); Matrix: O(n2)

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists:

1 2

34

• Let n = |V| and m = |E|; let d(u) = degree of u

• ABCD: How much space does it take to store G
as an adjacency list vs. adjacency matrix?

A. List: O(n2+e); Matrix: O(n2)

B. List: O(n+e); Matrix: O(n + e)

C. List: O(n2); Matrix: O(n + e2)

D. List: O(n+e); Matrix: O(n2)

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists: Adjacency Matrix:

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

1 2

34

• Let n = |V| and m = |E|; let d(u) = degree of u

• ABCD: What’s the runtime of iterating over all
edges?

A. List: O(n2); Matrix: O(n2)

B. List: O(n+e); Matrix: O(n2)

C. List: O(n + e); Matrix: O(n + e)

D. List: O(n+e); Matrix: O(n2 + e)

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists:

1 2

34

• Let n = |V| and m = |E|; let d(u) = degree of u

• ABCD: What’s the runtime of iterating over all
edges?

A. List: O(n2); Matrix: O(n2)

B. List: O(n+e); Matrix: O(n2)

C. List: O(n + e); Matrix: O(n + e)

D. List: O(n+e); Matrix: O(n2 + e)

1

2

3

4

2

3

2

4

3

Node: Neighbors:
Adjacency lists: Adjacency Matrix:

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

1 2

34

Adjacency Matrix vs
Adjacency List

• Reminder: n = |V| and m = |E|; let d(u) = degree of u

• Adjacency matrix:

• Storage space: O(n2)

• Iterate over edges: O(n2) time

• Check if there’s an edge from u to v: O(1)

• Good for dense graphs

• e.g., if n2 is close to n2, you need n2 storage anyway.

Adjacency Matrix vs
Adjacency List

• Reminder: n = |V| and m = |E|; let d(u) = degree of u

• Adjacency matrix:

• Storage space: O(n2)

• Iterate over edges: O(n2) time

• Check if there’s an edge from u to v: O(1)

• Good for dense graphs

• e.g., if n2 is close to n2, you need n2 storage anyway.

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

Adjacency Matrix vs
Adjacency List

• Reminder: n = |V| and m = |E|; let d(u) = degree of u

• Adjacency list:

• Storage space: O(n + e)

• Iterate over edges: O(n + e) time

• Check if there’s an edge from u to v: O(d(u))

• Good for more sparse graphs:

• e.g., if |E| is close to n, n + e ~= 2n, which is O(n)

1

2

3

4

2

3

2

4

3

Node: Neighbors:

Graph Algorithms
You can take entire graduate-level courses on
graph algorithms. In this class:

• Search/traversal: search for a particular node
or traverse all nodes (Lab 9)

• Breadth-first

• Depth-first

• Shortest Paths (A4)

• Spanning trees

Graph Algorithms
You can take entire graduate-level courses on
graph algorithms. In this class:

• Search/traversal: search for a particular node
or traverse all nodes (Lab 9)

• Breadth-first

• Depth-first

• Shortest Paths (A4)

• Spanning trees

