3 aR

Rew

5

Lecture 17
Some more hashing, Intro to Graphs

Announcements

Goals

e Know how to avoid using LinkedList buckets
using open addressing with linear or
quadratic probing.

e Understand the relationship between Java
Object’s hashCode and equals methods.

e Know the definition of a graph and basic
associated terminology:

 Node/vertex; edge/arc; directed, undirected; adjacent; (in/
out-)degree; path; cycle;

Hash Functions:
Necessary Properties

Hash Functions:
Necessary Properties

If h is a hash function, then:

Hash Functions:
Necessary Properties

If h is a hash function, then:

e his deterministic and fast to compute:
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

Hash Functions:
Necessary Properties

If h is a hash function, then:

e his deterministic and fast to compute:
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

 Equal objects hash to equal values:
h(i) == h()) if 1.equals(j)

Hash Functions:
Necessary Properties

If h is a hash function, then:

e his deterministic and fast to compute:
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

 Equal objects hash to equal values:
h(i) == h()) if 1.equals(j)

* Collisions are possible:
If !i.equals(j) itis possible that h(i) == h(j)

or: h(i) == h(j) does not imply i.equals(j)

Hash Functions:
Desirable Properties

Hash Functions:
Desirable Properties

We would like our hash functions distribute
values evenly among buckets.

It’s hard to guarantee this without knowing keys

ahead of time, but usually easy in practice using
heuristics.

Hash Functions:
Desirable Properties

A universally terrible hash function: h(k) = 0

Hash function quality often depends on the keys.
e.g., if keys are WWU CSCI course numbers:

e h(k) =k % 100 (1’s place)
e pbad because many collisions (141, 241, 301, ...)

e h(k) =k /100 (100’s place)
e bad because this will only use buckets 0..6

One weird tip: make the table size prime so divisibility
patterns in keys don'’t result in patterns in hash buckets.

Hashing Multiple Integers

e Various heuristic methods:

e @+b+c+d) %N

e (kM + bk"N2 + ckA3 + dkM) % N

Hashing Strings

e Interpret ASCII (or unicode) representation as an
integer.

e Java String uses:
s[0]*31"(n-1) + s[1]*31"(n-2)+ .. +s[n-1]

Collision Resolution

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

* + Easy to implement

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

* + Easy to implement

* - Wastes space (linked list overhead)

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

* + Easy to implement
* - Wastes space (linked list overhead)

e - Wastes time (pointer lookups, cache locality)

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

* + Easy to implement
* - Wastes space (linked list overhead)

e - Wastes time (pointer lookups, cache locality)

e Open Addressing - use empty buckets to store
things that belong in other buckets.

Collision Resolution

* Chaining - use a LinkedList to store multiple
elements per bucket.

* + Easy to implement
* - Wastes space (linked list overhead)

e - Wastes time (pointer lookups, cache locality)

e Open Addressing - use empty buckets to store
things that belong in other buckets.

* Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

(1, "dog”);
put(11 “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD =+ O

put(key):
h = hash(key);
while A[h] is full:
h (h+1) % N
A[h] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(, dOQ)5 0 put (key) :

pu’[(‘l'l “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 while A[h] is full:
put(14, “cat”); 3 h = (h+1) ¢ N
put(24, “ape”); 4 A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(, dOQ)5 0 put (key) :

pu’[(‘l'l “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 (11, auk) while A[h] is full:
put(14, “cat”); 3 h = (h+1) ¢ N
put(24, “ape”); 4 A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(, dOQ)5 0 10, bean put (key) :

pu’[(‘l'l “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 (11, auk) while A[h] is full:
put(14, “cat”); 3 h = (h+1) ¢ N
put(24, “ape”); 4 A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dOQ)5 0 10, bean put (key) :

pu’[(‘l'l “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 (11, auk) while A[h] is full:
put(14, “cat”); 3 h = (h+1) ¢ N
put(24, “ape”); 4 (14, cat) Al[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(, dOQ)5 0 10, bear) put (key) :

pu’[(‘l'l “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 (11, auk) while A[h] is full:
put(14, “cat”); 3 (24, ape) h = (h+1) % N
put(24, “ape”); 4 (14, cat) Al[h] = value

Open Addressing with
Linear Probing

 Problem with linear probing:

* Hashing clustered values (e.g., 1,1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

B~ W0 DD =+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put(key):
h = hash(key);
while A[h] is full:
h (h+1) % N
A[h] value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Linear probing looks at H, H+1, H+2, H+3, H+4, ...
Quadratic probing looks at H, H+1, H+4, H+9, H+16, ...

put (key):
H = hash(key);
pUt(1 udog) 0 (10, bear) i = O;
put(11, “auk”); 1 (1, dog) while A[h] is full:
put(10, “bear”); 2 (11, auk) h = (H + 1i2) % N
put(14, “cat”); 3 | (24, ape) it+;
put(24, “ape”); 4 (14, cat) A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Linear probing looks at H, H+1, H+2, H+3, H+4, ...
Quadratic probing looks at H, H+1, H+4, H+9, H+16, ...

put (key):
H = hash(key);
pUt(1 udog) 0 (10, bear) i = O;
put(11, “auk”); 1 (1, dog) while A[h] is full:
put(10, “bear”); 2 (11, auk) h = (H + 1i2) % N
put(14, “cat”); 3 | (24, ape) it+;
put(24, “ape”); 4 (14, cat) A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(0, “ape”);

put(1, “dog”); put (key) :

put(20, “elf”); H = hash(key);
put(21, “auk”); i=0;

put(40, “bear”); while A[h] is full:
put(41, “cat”); h = (H + i2) % N
put(60, “elk”); i++;

put(61, “imp?”); Alh] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(Q, “ape”); 0

put(1, “dog”); f put (key) :
put(20, “elf”); 0,1,4 H = hash(key):
put(21, “auk”); 1,2 i=0:

put(40, “bear”); 0, 1,4,9 while A[h] is full:
put(41, “cat™); 1,2,5 h = (H + i2) ¢ N
put(60, “elk”); 0,1,4,9,6 i++;

put(61, “imp”); 1,2,5,10,7 Alh] = value

Open Addressing: Runtime

e May be faster, but may not be. Depends on
keys.

e There’s no free lunch: worst-case is always O(n).

* |In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Hashing in Java

e Object has a hashCode method.

By default, this returns the object’s address in memory.

e Scenario 1: You are using a class that
someone else wrote.

e All Java objects (i.e., non-primitive types)
inherit from Object.

e |f you want to put an instance of the class In
a hash table, you don’t need to know how to

hash It!
e Just call its hashCode method.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java

* Object has a hashCode method.

By default, this returns the object’s address in memory.

e Scenario 2: You are writing a class.

e |ts hashCode method needs to have the properties
of a hash function!

1. Deterministic: always returns the same value for the same object.

2. Equal objects have equal hash codes.
* |In Java, “equal” means whatever the equals method
says it means.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java

* Object has a hashCode method.

By default, this returns the object’s address in memory.

e Scenario 2: You are writing a class.

e |ts hashCode method needs to have the properties
of a hash function!

1. Deterministic: always returns the same value for the same object.

2. Equal objects have equal hash codes.
* |In Java, “equal” means whatever the equals method
says it means.

Consequence: if you change the definition of equals (e.g., by
overriding it), you may have to override hashCode make sure that
equal objects have equal hash codes!

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java

Consequence: if you override equals, you may have to
override hashCode to match.

class Person {
String firstName;
String lastName;

public boolean equals(Person p) {
return firstName.equals(p.firstName)
&& lastName.equals(p.lastName) ;

}

public int hashCode() {
return auxHash(firstName)
+ auxHash(lastName) ;

Further Reading

e CLRS 11.5: Perfect Hashing

* You can guarantee O(1) lookups and insertions if the
set of keys is fixed

e C++ implementations from Google:

e sparse_hash_map - optimized for memory overhead

e dense_hash_map - optimized for speed

http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/

R R

. -

T
ar
!

i R

' 4

CErah os

Lecture 17

Some-more-hashing, Intro to Graphs

e T T annw weaw Srsnnan

:
i
:

crreecresesessesedprsereccece
:

:
2
:
:
m
’
:
:
£
i
.
i
-
i
:
-
i
:
:
$
:

:
-
-
:
-
.
.
:

:
*

" YOU'RE llIlIKIHG‘I’IIII

imgﬁp com

L S

$30,000

2« Graph: a bunch of points connected by lines. _.
—
The Ilnes may have dlrectlons or not g

--~-—1gnu-“y
a2 BB

Fw' g
“Rr‘jﬁ

This Is a graph:

The internet’s undersea world

The vast majority of the world's
communications are not curied by
satellites but an altogether older
technology: cables under the earth's
oceans, Asa ship accidentally wipes
out Asia’s net access, this map
shows how we rely on collections of
wires of less than 10cm diameter to
nk us all together

submarine
cable systems
In-service

Planned

Tumaged

ALA0T AN 4 TR Ol by
o4 gags lybem 3 v zred endw
TR B W
vew ow N3

p—

Surse

'Cuunu\‘

AUSTRALIA

LI ——

L LINEAE

NEW
ZEALAND

e Santtle

UNITED
STATES

—olen Angetes

’ .Y \
“Wipprona SN "j‘i.c-' ~

A=Y

s B

Cayennce

®io e Jameire

Alexandria, Wednesday
A ship's anchor accidentally
cuts fwo cables, SeaMeWes
and FLAG Europe-Asia,
_ reducing internes capacity
Dulsme, v |n Asla by 79%
. *Lh
.
/ ¥ thu
t \ h
il % I .
'-Jf‘f'."' = . """"‘?
) Gibratae - /\
Iaml(ltr\“ R
Do
AFRICA mescad || i
Ohaning
ar = W\ ~
o - _ Calambo
Abigjine ® " >
S et iheavilie
Dar o Salasime
&L
- ASIA
Al has an en
number of inte
Misetoe 501 millon of t
1.3 billion users
growing by 88;
~Lape Tomty

The edges are made of these:

Social Networks

(before they were cool)

Republic of Letters

Locke’s (blue) and Voltaire’s (yellow) correspondence.
Only letters for which complete location information is available are shown.
Data courtesy the Electronic Enlightenment Project, University of Oxford.

Social'Networks

(before they were cool)

Ancré Morellet

Voltare

Benjamin Franklin
Anne Robert Jacques Turgot @

Octavie Durey de Mesnéres

Madame Helvetus

o &,
8 3] it
45 St
BC-D 2 %)
e R 3 . : ~
3 » o
foss o L e o A s
| : Ve : i
— l :
LnrERI25 S8t & L, pRlcoot WBJSBS :)
: , spe’ Link 070 SBS
weosss flues s g i [1se0 i 5 e
°116 6 e | 8 8 B _ -
BC ‘ L : ,
© | : AGURE. - S
c i 10
; ® 103 St 1 \
> o £ !_l“ '
Q
g '33,3‘ : 289t .gﬁ\St /
| S| mANHATTAN |
86 St '» B6 St | OBB St «86 5t
peea 1 § . Ejec gjese |lab
vest iz | {28 veern
HOE_° e g METROPCLITAN |2] EasT
Raf | s A |, |
725t “Wm72st E *72 8t =
k123 CBC CENTHAL : St [|ad & :
(1] P ‘9}—5‘#‘) - IHunter | XS
86 St €) Q %%, %, |5 9% o
0ln Center o o £y b 8 — 0 /I oAV
&1 /i L ee | i
W Lexington Avise st AOoSS T Queensbor }
e NRW :nI :1.. NR‘W LOAVWAY Plaza
Columbus Circl | Q ' P i :
Fot lé,.A-B-ng 57 St gokg‘ | fg? mmm Sq 4
D€ ' F oy 5y NRW Lexington Av/53 St EM, EM _J N %,
o6t o s a L4 28 “ Ly
51 St ’ %
sotbune S CE® | §8& 2 60 C%G‘ Y >
St/Port * s (M) -
Bus Term > 3 i 21 ,
OrF s 5Av O Grand Centra nmxd ”"W"-W;Wi‘;'\’t‘: : | g 124 aassaany 1YY GLENDALE
3 5 7 42 St &)| MowcentS : ma] v unters : o v e Lo) :
T;S‘t % . Fﬁpk © | sas567Metro-North ﬁ R T T X : s '. i :
| . ~140 3 e [X — Long - B e e I W ""'.
idsonFd _ Penn fsng ¥ g R < " MASPETH Forest Av
Val’dﬁ.swoﬂ i ones 2% a Cige “NO & L = o HIAREWNAN l ™

The USA as a graph:

* Neighboring states are connected by edges.

Electrical circuit

9]

gger electrical circuit

........

3 e ese seo - -~ -
[- - .- 5
ne nisse —
LR - a
r o
. " 4 g .
2 paSessses J|S :
1 be = < avs 4 H
£ = houtsa
W .
L] > .
»

-
"bonoon s

-
I3
-
. s L
5=
-
."' Yiés
! | i "=
. rp ey
L]
" =

......
oooooo

B
it il

AERERTE AR

v

1
29 B2 Al e
. e @S
- semes
A il

......

uu-. .o pos

-
4
-
Pt 8 +
| | - — oolgl
. -
» AT : 224
11t s
» : - .. .
LI er e .o .o .o
!
-e - *e e
q{ - e
Ll
- -
" L "

e

.
lil » 2%
.. .

>

This Is not a graph:

It IS a cat.

S | N
oxoxo
N7

87,
DR
2 Q€

AN

XK
538

NSELRH

/DR

P dr

/2T | AN
(6 Q) C2
SR
SADRRR
QRO
T N
el

O &
ol
B

that can recognize cats.

Graphs: Abstract View

Graphs, Formally

e A directed graph (digraph) is a pair (V, E) where:
* Vis a (finite) set
* E is a set of ordered pairs (u, v) where u, vare in V

e Often (not always): u # v (i.e. no edges from a vertex to itself)

e An element In V Is called a vertex or node
 Elements in E are called edges or arcs
e |\V| = size of V (traditionally called n)

e [E| = size of E (traditionally called m)

An example directed graph

V={4,B, C,D, E}

E=1(4, (), (B, 4),
(B, C), (C, D),
(D, C);

V=5

[E| =5

Graphs, Formally

* An undirected graph iIs a just like a digraph, but

* E is aset of unordered pairs (u, v) where u, vare inV

V=1{4,B,C,D,E

E={14,C}, B4},
B,C5, {C.Dj

V=5
|E| =4 Q
* An undirected graph can be converted to an equivalent directed

graph:

* Replace each undirected edge with two directed edges in
opposite directions

* A directed graph can’t always be converted to an undirected graph.

Graph Terminology:
Adjacency, Degree

Two vertices are adjacent if they are connected by an edge

Nodes u and v are called the source and sink of the directed
edge (u, v)

Nodes u and v are endpoints of an edge (u, v) (directed or
undirected)

The outdegree of a vertex u in a directed graph is the number of
edges for which u is the source

The indegree of a vertex v in a directed graph is the number of
edges for which v is the sink

The degree of a vertex u in an undirected graph is the number
of edges of which u is an endpoint

Graph Teminology: Paths,
Cycles

e A path Is a sequence of vertices where
each consecutive pair are adjacent.

* In a directed graph, paths must follow @‘9
the direction of the edges (nodes must E

be ordered source then sink). Path A,C,D

A cycle is a path that ends where it
started, e.g.: X, V, z, X

A graph is acyclic if it has no cycles.

