
CSCI 241
Lecture 17

Some more hashing, Intro to Graphs

Announcements

Goals
• Know how to avoid using LinkedList buckets

using open addressing with linear or
quadratic probing.

• Understand the relationship between Java
Object’s hashCode and equals methods.

• Know the definition of a graph and basic
associated terminology:

• Node/vertex; edge/arc; directed, undirected; adjacent; (in/
out-)degree; path; cycle;

Hash Functions:
Necessary Properties

Hash Functions:
Necessary Properties

If h is a hash function, then:

Hash Functions:
Necessary Properties

If h is a hash function, then:

• h is deterministic and fast to compute:  
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

Hash Functions:
Necessary Properties

If h is a hash function, then:

• h is deterministic and fast to compute:  
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

• Equal objects hash to equal values: 
h(i) == h(j) if i.equals(j)

Hash Functions:
Necessary Properties

If h is a hash function, then:

• h is deterministic and fast to compute:  
for some fixed key k, h(k) always returns the same
value and is efficiently computable (usually O(1))

• Equal objects hash to equal values: 
h(i) == h(j) if i.equals(j)

• Collisions are possible: 
If !i.equals(j) it is possible that h(i) == h(j) 
 
or: h(i) == h(j) does not imply i.equals(j)

Hash Functions:
Desirable Properties

Hash Functions:
Desirable Properties

We would like our hash functions distribute
values evenly among buckets.

It’s hard to guarantee this without knowing keys
ahead of time, but usually easy in practice using
heuristics.

Hash Functions:
Desirable Properties

A universally terrible hash function: h(k) = 0

Hash function quality often depends on the keys.

e.g., if keys are WWU CSCI course numbers:

• h(k) = k % 100 (1’s place)

• bad because many collisions (141, 241, 301, …)

• h(k) = k / 100 (100’s place)

• bad because this will only use buckets 0..6

One weird tip: make the table size prime so divisibility
patterns in keys don’t result in patterns in hash buckets.

Hashing Multiple Integers
• Various heuristic methods:

• (a + b + c + d) % N

• (ak^1 + bk^2 + ck^3 + dk^4) % N

Hashing Strings
• Interpret ASCII (or unicode) representation as an

integer.

• Java String uses:  
s[0]*31^(n-1) + s[1]*31^(n-2)+ … +s[n-1]

Collision Resolution

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• + Easy to implement

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• + Easy to implement

• - Wastes space (linked list overhead)

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• + Easy to implement

• - Wastes space (linked list overhead)

• - Wastes time (pointer lookups, cache locality)

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• + Easy to implement

• - Wastes space (linked list overhead)

• - Wastes time (pointer lookups, cache locality)

• Open Addressing - use empty buckets to store
things that belong in other buckets.

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• + Easy to implement

• - Wastes space (linked list overhead)

• - Wastes time (pointer lookups, cache locality)

• Open Addressing - use empty buckets to store
things that belong in other buckets.

• Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Problem with linear probing:

• Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

0
1
0, 1, 4
1, 2
0, 1, 4, 9
1, 2, 5
0, 1, 4, 9, 6
1, 2, 5, 10, 7

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing: Runtime
• May be faster, but may not be. Depends on

keys.

• There’s no free lunch: worst-case is always O(n).

• In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Hashing in Java
• Object has a hashCode method.

• Scenario 1: You are using a class that
someone else wrote.

• All Java objects (i.e., non-primitive types)

inherit from Object.

• If you want to put an instance of the class in
a hash table, you don’t need to know how to
hash it!

• Just call its hashCode method.

By default, this returns the object’s address in memory.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java
• Object has a hashCode method. 

• Scenario 2: You are writing a class.

• Its hashCode method needs to have the properties
of a hash function!

1. Deterministic: always returns the same value for the same object.

2. Equal objects have equal hash codes.

• In Java, “equal” means whatever the equals method

says it means.

By default, this returns the object’s address in memory.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java
• Object has a hashCode method. 

• Scenario 2: You are writing a class.

• Its hashCode method needs to have the properties
of a hash function!

1. Deterministic: always returns the same value for the same object.

2. Equal objects have equal hash codes.

• In Java, “equal” means whatever the equals method

says it means.

Consequence: if you change the definition of equals (e.g., by
overriding it), you may have to override hashCode make sure that
equal objects have equal hash codes!

By default, this returns the object’s address in memory.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java
Consequence: if you override equals, you may have to
override hashCode to match.
class Person {
 String firstName;
 String lastName;

 public boolean equals(Person p) {
 return firstName.equals(p.firstName)
 && lastName.equals(p.lastName);
 }

 public int hashCode() {
 return auxHash(firstName)
 + auxHash(lastName);
 }
}

Further Reading
• CLRS 11.5: Perfect Hashing

• You can guarantee O(1) lookups and insertions if the
set of keys is fixed

• C++ implementations from Google:

• sparse_hash_map - optimized for memory overhead

• dense_hash_map - optimized for speed

http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/

CSCI 241
Lecture 17

Some more hashing, Intro to Graphs

Graph: a bunch of points connected by lines.
The lines may have directions, or not.

This is a graph:

The edges are made of these:

Social Networks 
(before they were cool)

Voltaire and Benjamin Franklin

Social Networks 
(before they were cool)

The USA as a graph:
• Neighboring states are connected by edges.

Electrical circuit

A bigger electrical circuit

This is not a graph:

it is a cat.

This is a graph

that can recognize cats.

Graphs: Abstract View

K5 K3,3

Graphs, Formally
• A directed graph (digraph) is a pair (V, E) where:

• V is a (finite) set

• E is a set of ordered pairs (u, v) where u, v are in V

• Often (not always): u ≠ v (i.e. no edges from a vertex to itself)

• An element in V is called a vertex or node

• Elements in E are called edges or arcs

• |V| = size of V (traditionally called n)

• |E| = size of E (traditionally called m)

An example directed graph
A

B C

D
E

V = {A, B, C, D, E}
E = {(A, C), (B, A),

(B, C), (C, D),
(D, C)}

|V| = 5
|E| = 5

Graphs, Formally
• An undirected graph is a just like a digraph, but

• E is a set of unordered pairs (u, v) where u, v are in V

• An undirected graph can be converted to an equivalent directed
graph:

• Replace each undirected edge with two directed edges in
opposite directions

• A directed graph can’t always be converted to an undirected graph.

A

B C

D
E

V = {A, B, C, D, E}
E = {{A,C}, {B,A},

{B,C}, {C,D}}
|V| = 5
|E| = 4

Graph Terminology:
Adjacency, Degree

• Two vertices are adjacent if they are connected by an edge

• Nodes u and v are called the source and sink of the directed
edge (u, v)

• Nodes u and v are endpoints of an edge (u, v) (directed or
undirected)

• The outdegree of a vertex u in a directed graph is the number of
edges for which u is the source

• The indegree of a vertex v in a directed graph is the number of
edges for which v is the sink

• The degree of a vertex u in an undirected graph is the number
of edges of which u is an endpoint

Graph Teminology: Paths,
Cycles

• A path is a sequence of vertices where
each consecutive pair are adjacent.

• In a directed graph, paths must follow
the direction of the edges (nodes must
be ordered source then sink).

• A cycle is a path that ends where it
started, e.g.: x, y, z, x

• A graph is acyclic if it has no cycles.

A

B C

DE

Path A,C,D

