

CSCI 241

Lecture 17 Some more hashing, Intro to Graphs

Announcements

Goals

- Know how to avoid using LinkedList buckets using **open addressing** with **linear** or **quadratic probing**.
- Understand the relationship between Java Object's **hashCode** and **equals** methods.
- Know the definition of a **graph** and basic associated terminology:
	- Node/vertex; edge/arc; directed, undirected; adjacent; (in/ out-)degree; path; cycle;

If *h* is a hash function, then:

If *h* is a hash function, then:

• h is **deterministic** and **fast to compute**: for some fixed key k, *h*(k) always returns the same value and is efficiently computable (usually O(1))

If *h* is a hash function, then:

- h is **deterministic** and **fast to compute**: for some fixed key k, *h*(k) always returns the same value and is efficiently computable (usually O(1))
- Equal objects hash to equal values: $h(i) == h(i)$ if i.equals(j)

If *h* is a hash function, then:

- h is **deterministic** and **fast to compute**: for some fixed key k, *h*(k) always returns the same value and is efficiently computable (usually O(1))
- Equal objects hash to equal values: $h(i) == h(i)$ if i.equals(j)
- **Collisions** are possible: If \mathbf{i} i.equals(j) it **is possible** that $h(i) == h(i)$

or: $h(i) == h(i)$ does not imply i.equals(j)

Hash Functions: **Desirable** Properties

Hash Functions: **Desirable** Properties

We would *like* our hash functions distribute values evenly among buckets.

It's hard to guarantee this without knowing keys ahead of time, but usually easy in practice using heuristics.

Hash Functions: **Desirable** Properties

A universally terrible hash function: $h(k) = 0$

Hash function quality often depends on the keys. e.g., if keys are WWU CSCI course numbers:

- $h(k) = k \frac{9}{6}$ 100 (1's place)
	- bad because many collisions (141, 241, 301, ...)
- $h(k) = k / 100$ (100's place)
	- bad because this will only use buckets 0..6

One weird tip: make the table size prime so divisibility patterns in keys don't result in patterns in hash buckets.

Hashing Multiple Integers

- Various heuristic methods:
	- $(a + b + c + d)$ % N
	- $(ak^1 + bk^2 + ck^3 + dk^4)$ % N

Hashing Strings

- Interpret ASCII (or unicode) representation as an integer.
- Java String uses: $s[0]*31^(n-1) + s[1]*31^(n-2)+ ... +s[n-1]$

• **Chaining** - use a LinkedList to store multiple elements per bucket.

- **Chaining** use a LinkedList to store multiple elements per bucket.
	- \bullet + Easy to implement

- **Chaining** use a LinkedList to store multiple elements per bucket.
	- \bullet + Easy to implement
	- - Wastes space (linked list overhead)

- **Chaining** use a LinkedList to store multiple elements per bucket.
	- \bullet + Easy to implement
	- - Wastes space (linked list overhead)
	- - Wastes time (pointer lookups, cache locality)

- **Chaining** use a LinkedList to store multiple elements per bucket.
	- \bullet + Easy to implement
	- - Wastes space (linked list overhead)
	- - Wastes time (pointer lookups, cache locality)
- **Open Addressing** use empty buckets to store things that belong in other buckets.

- **Chaining** use a LinkedList to store multiple elements per bucket.
	- \bullet + Easy to implement
	- - Wastes space (linked list overhead)
	- - Wastes time (pointer lookups, cache locality)
- **Open Addressing** use empty buckets to store things that belong in other buckets.
	- Need some scheme for deciding which buckets to look in.

- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

put(1, "dog"); put(11, "auk"); put(10, "bear"); put(14, "cat"); put(24, "ape");

0 1 2 3 4

```
put(key):
   h = hash(key); while A[h] is full:
      h = (h+1) % N
   A[h] = value
```
- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```


$$
put(key):\nh = hash(key);\nwhile A[h] is full:\nh = (h+1) % N\nA[h] = value
$$

- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
0 1 (1, dog) 2 (11, auk) 3 4

```
put(key):
 h = hash(key); while A[h] is full:
    h = (h+1) % N
 A[h] = value
```
- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
0 (10, bear) 1 (1, dog) 2 (11, auk) 3 4 put(key): h = **hash**(key); **while** A[h] **is** full: h = (h+1) % N A[h] = value

- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
0 (10, bear) 1 (1, dog) 2 (11, auk) 3 4 (14, cat)

$$
put(key):\nh = hash(key);\nwhile A[h] is full:\nh = (h+1) % N\nA[h] = value
$$

- **Open Addressing** use empty buckets to store things that belong in other buckets.
- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```


 $(h+1)$ % N

value

- Problem with linear probing:
	- Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5) will result in a lot of searching.

put(1, "dog"); put(11, "auk"); put(10, "bear"); put(14, "cat"); put(24, "ape");

0 (10, bear) 1 (1, dog) 2 (11, auk) 3 (24, ape) 4 (14, cat)

put(key): $h = hash(key);$ **while** A[h] **is** full: $h = (h+1)$ % N $A[h] = value$

• Quadratic Probing: Jump further ahead to avoid clustering of full buckets.

Linear probing looks at H, $H+1$, $H+2$, $H+3$, $H+4$, ... Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

put(1, "dog"); put(11, "auk"); put(10, "bear"); put(14, "cat"); put(24, "ape");

0 (10, bear) 1 (1, dog) 2 (11, auk) 3 (24, ape) 4 (14, cat)

put(key): $H = hash(key);$ $i = 0;$ **while** A[h] **is** full: $h = (H + i^2)$ % N $i++;$ $A[h] = value$

• Quadratic Probing: Jump further ahead to avoid clustering of full buckets.

Linear probing looks at H, $H+1$, $H+2$, $H+3$, $H+4$, ... Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

put(1, "dog"); put(11, "auk"); put(10, "bear"); put(14, "cat"); put(24, "ape");

0 (10, bear) 1 (1, dog) 2 (11, auk) 3 (24, ape) 4 (14, cat)

put(key): $H = hash(key);$ $i = 0;$ **while** A[h] **is** full: $h = (H + i^2)$ % N $i++;$ $A[h] = value$

• Quadratic Probing: Jump further ahead to avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into an array size of 10 using quadratic probing?

```
put(0, "ape");
put(1, "dog");
put(20, "elf");
put(21, "auk");
put(40, "bear");
put(41, "cat");
put(60, "elk");
put(61, "imp");
```

```
put(key):
    H = hash(key);
   i = 0; while A[h] is full:
      h = (H + i^2) % N
      i++;A[h] = value
```
• Quadratic Probing: Jump further ahead to avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into an array size of 10 using quadratic probing?

put $(0, "ape");$ put(1, "dog"); put(20, "elf"); 0, 1, 4 put(21, "auk"); 1, 2 put(40, "bear"); 0, 1, 4, 9 put(41, "cat"); put(60, "elk"); 0, 1, 4, 9, 6 put(61, "imp"); 1, 2, 5, 10, 7 0 \blacksquare 1, 2, 5

```
put(key):
    H = hash(key);
   i = 0; while A[h] is full:
      h = (H + i^2) % N
      i++;A[h] = value
```
Open Addressing: Runtime

- May be faster, but may not be. Depends on keys.
- There's no free lunch: worst-case is always O(n).

• In practice, average-case is O(1) if you make good design decisions and insertions are not done by an adversary.

• Object has a [hashCode](https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--) method.

By default, this returns the object's address in memory.

- **• Scenario 1: You are using a class** that someone else wrote.
	- All Java objects (i.e., non-primitive types) inherit from Object.
	- **•** If you want to put an instance of the class in a hash table, you don't need to know how to hash it!
	- **•** Just call its hashCode method.

• Object has a [hashCode](https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--) method.

By default, this returns the object's address in memory.

- **• Scenario 2: You are writing a class.**
	- Its hash Code method needs to have the properties of a hash function!
		- 1. Deterministic: always returns the same value for the same object.
		- 2. **Equal** objects have equal hash codes.
			- In Java, "equal" means whatever the equals method says it means.

• Object has a [hashCode](https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--) method.

By default, this returns the object's address in memory.

- **• Scenario 2: You are writing a class.**
	- Its hash Code method needs to have the properties of a hash function!
		- 1. Deterministic: always returns the same value for the same object.
		- 2. **Equal** objects have equal hash codes.
			- In Java, "equal" means whatever the equals method says it means.

Consequence: if you change the definition of equals (e.g., by overriding it), you may have to override hashCode make sure that equal objects have equal hash codes!

Consequence: if you override equals, you may have to override hashCode to match.

```
class Person {
   String firstName;
   String lastName;
```
}

```
 public boolean equals(Person p) {
   return firstName.equals(p.firstName)
       && lastName.equals(p.lastName);
 }
```

```
 public int hashCode() {
     return auxHash(firstName)
          + auxHash(lastName);
 }
```
Further Reading

- CLRS 11.5: Perfect Hashing
	- You can guarantee O(1) lookups and insertions if the set of keys is fixed
- C++ [implementations](http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/) from Google:
	- sparse_hash_map optimized for memory overhead
	- dense_hash_map optimized for speed

CSCI 241

Lecture 17 Some more hashing, Intro to Graphs

Graph: a bunch of points connected by lines. The lines may have directions, or not.

This is a graph:

The internet's undersea world

The edges are made of these:

Social Networks

(before they were cool)

Locke's (blue) and Voltaire's (yellow) correspondence. Only letters for which complete location information is available are shown. Data courtesy the Electronic Enlightenment Project, University of Oxford.

The USA as a graph:

• Neighboring states are connected by edges.

Electrical circuit

A bigger electrical circuit

 000

This is not a graph:

it is a cat.

This is a graph

that can recognize cats.

Graphs: Abstract View

 $K_{3,3}$

Graphs, Formally

- A directed graph (digraph) is a pair (V, E) where:
	- V is a (finite) set
	- E is a set of **ordered** pairs (u, v) where u, v are in V
	- Often (not always): $u \neq v$ (i.e. no edges from a vertex to itself)
- An element in V is called a vertex or node
- Elements in E are called edges or arcs
- $|V|$ = size of V (traditionally called n)
- $|E|$ = size of E (traditionally called m)

An example directed graph

 $V = \{A, B, C, D, E\}$ $E = \{(A, C), (B, A),\}$ (*B*, *C*), (*C*, *D*), (D, C) $|$ = 5 $|E| = 5$

Graphs, Formally

- An **un**directed graph is a just like a digraph, but
	- E is a set of **un**ordered pairs (u, v) where u, v are in V

$$
V = \{A, B, C, D, E\}
$$

$$
E = \{\{A, C\}, \{B, A\},\
$$

$$
\{B, C\}, \{C, D\}\}
$$

$$
|V| = 5
$$

$$
|E| = 4
$$

A

B C

D

E

- An **un**directed graph can be converted to an equivalent **directed** graph:
	- Replace each undirected edge with two directed edges in opposite directions
- ^A**directed** graph can't always be converted to an **undirected** graph.

Graph Terminology: Adjacency, Degree

- Two vertices are adjacent if they are connected by an edge
- Nodes u and v are called the source and sink of the **directed** edge (u, v)
- Nodes u and v are endpoints of an edge (u, v) (directed or undirected)
- The outdegree of a vertex *u* in a **directed** graph is the number of edges for which *u* is the source
- The indegree of a vertex *v* in a **directed** graph is the number of edges for which *v* is the sink
- The degree of a vertex *u* in an **undirected** graph is the number of edges of which *u* is an endpoint

Graph Teminology: Paths, Cycles

- A path is a sequence of vertices where each consecutive pair are adjacent.
- In a directed graph, paths must follow the direction of the edges (nodes must be ordered source then sink).

Path A,C,D

- A cycle is a path that ends where it started, e.g.: x, y, z, x
- A graph is acyclic if it has no cycles.