CSCI 241

Lecture 16
A3 Overview, Map ADT, Rehashing, Open Addressing

Goals

e Understand the architecture of A3

* Understand the purpose and operations of the Map
ADT.

e Know how to respond to large hash table load factors
by resizing the array and rehashing.

* Know how to avoid using LinkedList buckets using
open addressing with linear or quadratic probing.

e Understand the relationship between Java Object’s
hashCode and equals methods.

Announcements

e A3 Is out

A3 has 4 phases.

A3 has 4 phases.

It may sound scary.

A3 has 4 phases.

It may sound scary.

¥

DON’T
PANIC

A3 has 4 phases.

It may sound scary.

¥

DON’T
PANIC

It iIsn’t so bad:
e total lines of code is probably <= A2
 nothing here is as tricky as AVL rebalance
e you’re given unit tests

A3 has 4 phases.

0. Write an ArrayList clone

A3 has 4 phases.

0. Write an ArrayList clone
(done in Lab 6!)

A3 has 3 phases.

A3 has 3 phases.

1. Write a min-heap to implement a priority
queue with operations:
® boolean add(V value, P priority)
® V peek();
®V poll();

A3 has 3 phases.

;—use AList to handle growing the array!

1. Write a min-heap to implement a priority
queue with operations:
® boolean add(V value, P priority)
® V peek();
®V poll();

A3 has 3 phases.

;—use AList to handle growing the array!

1. Write a min-heap to implement a priority
queue with operations:
® boolean add(V value, P priority)
® V peek();
®V poll();

2. Write a hash table.

A3 has 3 phases.

;—use AList to handle growing the array!

1. Write a min-heap to implement a priority
queue with operations:
® boolean add(V value, P priority)
® V peek();
®V poll();
2. Write a hash table.

3. Use the hash table to augment the heap,
making the following operations efficient:

® boolean contains(V v);

® void changePriority(V v, P newP);

A3 has 3 phases.

;—use AList to handle growing the array!

1. Write a min-heap to implement a priority
queue with operations:
® boolean add(V value, P priority)

® V peek();
eV poll(); (not using AList to handle

o Write a hash table.< 9rowing the array)

3. Use the hash table to augment the heap,
making the following operations efficient:

® boolean contains(V v);

® void changePriority(V v, P newP);

Phase 3 - Hash your Heap

In Phase 1 Heap:
e contains requires searching the whole tree.

e changePriority requires searching the
whole tree, then bubbling down or up.

ANACA S

Phase 3 - Hash your Heap

In Phase 3 Heap:

e Each heap value is stored in the heap and in a
HashTable that tracks its index in the heap.

HashTable<V, Integer>:

value i (index in heap)

4
8
6

38

35

21

10

- "\

0

W o 0 = B

A —h
) O

21@ 8 14 35
.22\ 38| [55] [10] [20] |19

012345 6 7 8 9101112
Heap: [4 6521814 352238551020 19]

Phase 3 - Hash your Heap

In Phase 3 Heap:

e Each heap value is stored in the heap and in a
HashTable that tracks its index in the heap.

HashTable<V, Integer>:

value i (index in heap) 0 >
N AN
4 |0 To maximize confusion:
8 |4 ® The hash table is used to map Heap values to
6 |1 heap indices.
22 : ® The hash table’s keys are the heap’s values
21 3 012345 6 7 8 9 101112
10 10 Heap:[46 521814 352238551020 19]

Phase 3 - Hash your Heap

In Phase 3 Heap:

boolean contains(V Vv):
true iff map contains key v

HashTable<V, Integer>:

value

(index in heap)

4
8
6

38

35

21

10

- "\

i
0
4
1
8
6
3

10

P

PN

.22\ 38

8
/N
5| |1

5

0

N

35

2

14
/ N\
0] |1

9

012345 6 7 8 9 101112

Heap: [4 6521814 352238551020 19]

Phase 3 - Hash your Heap

In Phase 3 Heap:
vold changePriority(V v, P newP):
| = map.get(v);

change priority of heap

bubble it up or down [° :

/\ /\

HashTable<V, Integer>: 21 8 14 35
) / J\ /NN
5| |1 0 [1

value i (index in heap
4 0 22| [38] |5

38
6
38

0 2 9

012345 6 7 8 9101112
Heap: [4 6521814 352238551020 19]

Q| = B

Questions?

Origins of the “hash”

Hans Peter Luhn (July 1, 1896 — August 19, 1964) was a researcher in
the field of computer science, and, Library & Information Science for IBM

https://en.wikipedia.org/wiki/IBM

The Map ADT

* |n math, a map is a function.

 \What is a function, anyway?

The Map ADT

_ _ Domain Range
* |n math, a map is a function.
-1
e If F is a map then 0 — > 3
means that a maps to b. , .
e [has a: 3 21

* domain - the set of values F maps from
* range - the set of values that F maps a domain element to

* codomain - the set of all possible values in the range’s type,
regardless of whether any element in the domain maps to it

The Map ADT

Thing[] a = new Thing[10];

Thing

» |int thingField1 |0

int thingField2 |0

Thing

> |int thingField1 | 1

int thingField2 |1

© 00 NO Ok~ DN =+ O

The Map ADT

Thing[] a = new Thing[10];
* Arrays are great!

Thing

e Domain: 0..a.length

» |int thingField1 |0

int thingField2 |0

 Range: all elements

stored in the array Thing

> |int thingField1 | 1

int thingField2 |1

e Codomain: the type of
elements stored in the
array.

© 00 NO Ok~ DN =+ O

The Map ADT

Thing[] a = new Thing[10];
* Arrays are great!

Range:

| Domain: Thing

® DOmaln: O..a.length O > int thingField1 [0

1 int thingField2 |0
 Range: all elements 2

stored in the array | Thing

4 > lint thingField1 [1

5 int thingField2 |1
e Codomain: the type of 5
elements stored In the 7
array. g

We get to choose the codomain. Codomain: Thing objects.

The Map ADT

e Arrays are great!

e \We get to choose the codomain - type of the
array.

e Wouldn’t it be nice to choose the domain as
well?

* The Map ADT represents a mapping from keys
to values.

e we get to choose the type of the keys (domain) AND the
values (codomain)

The Map Interface

public interface Map<K,V> {
/** Returns the value to which the specified key
* 1s mapped, or null i1f this map contains no
* mapping for the key. */
V get(Object key);

/** Associates the specified value with the
* gspecified key in this map */
V put (K key, V value);

/** Removes the mapping for a key from this map
* if it is present */

V remove(Object key);

// more methods

https://stackoverflow.com/questions/857420/what-are-the-reasons-why-map-getobject-key-is-not-fully-generic

Implementing Map<K,V>

e Use a HashTable!

 Hash the key to determine array index

e Store values inarray| o ——bear’| -

1 ——*“dog” | —**“auk”| -
2
3

h(k) = k % A.length 4 —lrcacr | —Le[raped 4

put(1, “dog”); 5

put(11, “auk”); 6

put(10, “bear”); 7

put(14, “cat”); 8

put(24, “ape”); 9

Implementing Map<K,V>

e Use a HashTable!

 Hash the key to determine array index

e Store values inarray| o ——bear’| -

1 ——*“dog” | —**“auk”| -
2
3

h(k) = k % A.length 4 —lrcacr | —Le[raped 4

put(1, “dog”); 5

put(11, “auk”); 6

put(10, “bear”); 7

put(14, “cat”); 8

put(24, “ape”); 9

Implementing Map<K,V>

e Use a HashTable (or a HashSet of Key-Value pairs)

 Hash the key to determine array index

o Store-valuesinarray 0 | {10 ["bear”| -
1 ——1 |“dog”| —t|11|*“auk”|
e Store (K,V) pairs in 2
the array. 3
4 ——*14 |“cat” |24 |“ape”| H
put(1, dog”); 5
put(11 “auk”); 6
put(10, “bear”); 7
put(14, “cat”); 8
put(24, “ape”); 9

Hash Tables: Load Factor

entries in table

size of the array

Hash Tables: Load Factor

How full is your hash table”?

entries in table

Load factor A =
size of the array

The average bucket size is A.

Average-case runtime is O(A).

Hash Tables: Load Factor

entries in table

size of the array

Hash Tables: Load Factor

entries in table

Load factor A =

size of the array

Average-case runtime is O(A).
e If Ais large, runtime is slow.
e |f Ais small, memory is wasted.

Strategy: grow or shrink array when A gets too
large or small.

Shrinking the array

Requires rehashing:. put each element where in belongs in the
new array.

!

10 |“bear” | —|—
lldog" __> 11 44 auk"

!

—— 14 llcatll —p 24 llapell

© 0O NO O b WD = O

A

Shrinking the array

Requires rehashing:. put each element where in belongs in the
new array.

0 —*10 |“bear” | —] (10 % 3) -> 1
1 —*1|“dog”| —T*/11|”auk”

2

3

4 —— 14 |“cat” |—*24 |“ape”

S

6

V4

3 0

9 1 —10 |“bear”

Shrinking the array

Requires rehashing:. put each element where in belongs in the
new array.

0 —10 |“bear” | — (10 0% 3) -> 1

1 —*1|“dog”| —T*11|“auk” (1 0% 3) -~ 1

2

3

4 —— 14 |“cat” |—*24 |“ape”

5

6

{

3 0

9 1 —10 |“bear” | —*|1|“dog”| —

Shrinking the array

Requires rehashing:. put each element where in belongs in the

new array.
0 ——10 |“bear” | —
1 —> 1| “dog” 11| ”auk”
2
3
4 —— 14 |“cat” 24 |“ape”
5
6
{
3 0
9 1

!

!

(10 % 3) -> 1
(1% 3) > 1
(11 % 3) > 2

10

ubearn —_— 1 udog" _%

11 ')

auk”

Shrinking the array

Requires rehashing:. put each element where in belongs in the
new array.

0 —— 10 |“bear” | — (10%) -> 1

1 —* 1 |“dog”| —T*11|“auk” (%) -

- (11 % 3) > 2

4 ——* 14 |“cat” |24 |“ape” (14 %) -> 2

5

6

{

3 0

9 1 —10 |“bear” | —*|1|“dog”| —
2 ——*11| “auk”| —* 14 |“cat” |

Shrinking the array

Requires rehashing:. put each element where in belongs in the

new array.
0 —— 10 |“bear” | — (10 0%) -~ 1
1 — 1 |“dog” 11| “auk” (%) -
2
3 (11 % 3) -> 2
4 —> 14 |“cat” 24 |"ape” (14 %) -> 2
5 (24 % 3) -> 0
6
; 0 —>24 |“ape”|
9 1 — 10 |“bear” | —*|1|“dog”| —
2 — 11| “auk”| —>14 |“cat” | +

Growing the array

Also requires rehashing: put each element where in belongs In
the new array.

Exercise: Grow the array to size 6 and rehash:

0 ——24 |“ape”|
1 —10 |“bear” | —1|“dog”| —H
2 —— 11| “auk”| —* 14 |“cat” |
3
ABCD:
0 How many elements are in the most full bucket?
; A. 1
3 B. 2
4 C. 3
5 D. 4

Rehashing: Runtime

Let N = array size

© 00O NO O WD =L O

—1+10 |“bear” | —+— Let n = number of entries
__>1 udog" —_ 11 uaukn

—m* 14 |“cat” |24 |“ape”

visits N buckets

Rehashing algorithm: l visits n entries (total)
l could be O(n) =(
for each bucket b:
for each element e 1in b: l
put e i1nto the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

——10 |“bear” | —
—— 1 11 dog 144 1 1 V7] auk n
— 14 |“cat” 24 |"ape”

Rehashing algorithm:

for each bucket b:

Let C = array size
Let n = number of entries

for each element e in b:

put e i1nto the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

Let C = array size

“bear” | —— Let n = number of entries

14 dog {4 —— 1 1 14 auk ”n

llcat ”n — 2 4 4 ape ”n

visits C buckets
Rehashing algorithm: l

for each bucket b:
for each element e in b:
put e i1nto the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

Let C = array size

“bear” | —— Let n = number of entries

14 dog {4 —— 1 1 14 auk ”n

llcat ”n — 2 4 4 ape ”n

visits C buckets
Rehashing algorithm: l visits n entries (total)

for each bucket b: l
for each element e 1in b:
put e i1nto the new array

Rehashing: Runtime, take 1

Let C = array size

© 00O NO O WD =L O

—1+10 |“bear” | —+— Let n = number of entries
__>1 udog" —_ 11 uaukn

—m* 14 |“cat” |24 |“ape”

visits C buckets
Rehashing algorithm: l visits n entries (total)

l could be O(n) =(
for each bucket b:

for each element e 1in b: l
put e i1nto the new array

Rehashing: Runtime, take 1

Let C = array size

© 00O NO O WD =L O

—1+10 |“bear” | —+— Let n = number of entries
__>1 udog" —_ 11 uaukn

Overall runtime is:
—+ 14 [“cat” |—*24 |“ape” e worst-case O(C + n2)
e average-case O(C + n)

visits C buckets
Rehashing algorithm: l visits n entries (total)

l could be O(n) =(
for each bucket b:

for each element e 1in b: l
put e i1nto the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

Let C = array size

10

“bear” | —— Let n = number of entries

14 dog {4 —— 1 1 14 auk ”n

14

llcat ”n — 2 4 4 ape ”n

visits C buckets
Rehashing algorithm: l visits n entries (total)

for each bucket b: l
for each element e in b:
put e into the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

Let C = array size

10

“bear” | —— Let n = number of entries

14 dog {4 —— 1 1 14 auk ”n

14

llcat ”n — 2 4 4 ape ”n

visits C buckets
Rehashing algorithm: l visits n entries (total)

l could it be O(n)?
for each bucket b:

for each element e 1in b: l
put e into the new array

Rehashing: Runtime, take 1

© 00O NO O WD =L O

——10 |“bear” | —
—— 1 11 dog 144 1 1 V7] auk n
— 14 |“cat” 24 |"ape”

Let C = array size
Let n = number of entries

visits C buckets

Rehashing algorithm: l visits n entries (total)

for each bucket b: l

could it be O(n)?

for each element e in b: l

put e into the new array

We can’t have duplicate keys: all (k,v) pairs were already in the map!
Consequence: we don’t need to search the bucket when rehashing

Rehashing: Runtime, take 1

© 00O NO O WD =L O

——10 |“bear” | —
—— 1 11 dog 144 1 1 V7] auk n
—» 14 |“cat” 24 |"ape”

Let C = array size
Let n = number of entries

Overall runtime is:
e worst-case O(C + n)

visits C buckets

Rehashing algorithm: l visits n entries (total)

for each bucket b: l

could it be O(n)?

for each element e in b: l

put e into the new array

We can’t have duplicate keys: all (k,v) pairs were already in the map!
Consequence: we don’t need to search the bucket when rehashing

Hashing Multiple Integers

e Various heuristic methods:

e @+b+c+d) %N

e (kM + bk"N2 + ckA3 + dkM) % N

Hashing Strings

e Interpret ASCII (or unicode) representation as an
integer.

e Java String uses:
s[0]*31"(n-1) + s[1]*31"(n-2)+ .. +s[n-1]

Collision Resolution

e Chaining - use a LinkedList to store multiple
elements per bucket.

e Open Addressing - use empty buckets to
store things that belong in other buckets.

* Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

out(1, dog): 0 put (key):

put(11 “auk”); 1 h = hash(key);
put(10, “bear”); 2 while A[h] is full:
put(14, “cat”); 3 h = (h+l) $ N
put(24, “ape”); 4 A[h] = wvalue

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

out(1, dog): 0 put (key):

put(11 “auk”); 1 (1, dog) h = hash(key);
put(10, “bear”); 2 while A[h] is full:
put(14, “cat”); 3 h = (h+l) $ N
put(24, “ape”); 4 A[h] = wvalue

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

(1, "dog”);
put(11 “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD = O

(1, dog)
(11, auk)

put (key):
h = hash(key);
while A[h] is full:
h = (h+1) % N
A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

(1, "dog”);
put(11 “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD = O

(10, bear)
(1, dog)
(11, auk)

put (key):
h = hash(key);
while A[h] is full:
h = (h+1) % N
A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

(1, "dog”);
put(11 “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD = O

(10, bear)
(1, dog)
(11, auk)

(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h = (h+1) % N
A[h] = value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

(1, "dog”);
put(11 “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD = O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h = (h+1) % N
A[h] = value

Open Addressing with
Linear Probing

 Problem with linear probing:

* Hashing clustered values (e.g., 1,1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W DD =+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h = (h+1l) $ N
A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Linear probing
Quadratic probing

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

ooks at H, H+1, H+2, H+3, H+4, ...
ooks at H, H+1, H+4, H+9, H+16, ...

~ W DD = O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):

H = hash(key);

1 = 0;

while A[h] 1s full:
h = (H + i2) & N
i++;

A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Linear probing
Quadratic probing

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

ooks at H, H+1, H+2, H+3, H+4, ...
ooks at H, H+1, H+4, H+9, H+16, ...

~ W DD = O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):

H = hash(key);

1 = 0;

while A[h] 1s full:
h = (H + i2) & N
i++;

A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(0, ape”)

k :
put(20 “elf”) H = hash(key);
put(21, “auk”); 1= 0;
put(40, “bear”); while A[h] is full:
put(41, “cat”); h = (H + i2) $ N
put(60, “elk”); it++s
DUt(61, “|mp) A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(Q, “ape”); 0

put(1, “dog”); 1 put (key)

put(20, “elf”); 0,1, 4 H = hash(key);
put(21, “auk”); 1,2 i=0;

put(40, “bear”); 0, 1,4,9 while A[h] is full:
put(41, “cat”); 1,2,5 h = (H + i2) % N
put(60, “elk”); 0,1,4,9,6 i+

put(61, “imp”); 1, 2,95, 10,7

A[h] = value

Hashing in Java

e Object has a hashCode method.

By default, this returns the object’s address in memory.

* |t needs to have the properties of a hash
function!

1. Deterministic: always returns the same value for the
same object.

2. Equal objects have equal hash codes.

In Java, “equal” means whatever the equals method says.

Consequence: if you change the definition of equals (e.g., by
overriding it), you may have to override hashCode make sure it’s

consistent!

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java

Consequence: if you override equals, you may have to
override hashCode to match.

class Person {
String firstName;
String lastName;

public boolean equals(Person p) {
return firstName.equals(p.firstName)
&& lastName.equals(p.lastName) ;

}

public int hashCode() {
return auxHash(firstName)
+ auxHash(lastName) ;

Open Addressing: Runtime

e May be faster, but may not be. Depends on
keys.

e There’s no free lunch: worst-case is always
O(n).

e |In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Further Reading

e CLRS 11.5: Perfect Hashing

* You can guarantee O(1) lookups and insertions if the
set of keys is fixed

e C++ implementations from Google:

e sparse_hash_map - optimized for memory overhead

e dense_hash_map - optimized for speed

http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/

Map and HashMap

e Map isan ADT

e HashMap is an implementation of a Map using a
Hash Table.

 TreeMap is a thing too - some of you already wrote
one!

 AVL tree: store a key and a value in each node; BST property
applies to keys only

e Example: TreeMap<String, Integer> maps words to the number
of times they have been seen

TreeMap vs HashMap

e Runtime of put, get, and remove:
e TreeMap has O(log n) worst and expected

* HashMap has O(1) expected, O(n) worst; better in
practice

e Other considerations:
* TreeMaps enable sorted traversal of keys

e HashMaps are space-inefficient if load factor is small

