
CSCI 241
Lecture 16

A3 Overview, Map ADT, Rehashing, Open Addressing

Goals
• Understand the architecture of A3

• Understand the purpose and operations of the Map
ADT.

• Know how to respond to large hash table load factors
by resizing the array and rehashing.

• Know how to avoid using LinkedList buckets using
open addressing with linear or quadratic probing.

• Understand the relationship between Java Object’s
hashCode and equals methods.

Announcements
• A3 is out

A3 has 4 phases.

A3 has 4 phases.
It may sound scary.

A3 has 4 phases.
It may sound scary.

A3 has 4 phases.
It may sound scary.

It isn’t so bad:

• total lines of code is probably <= A2

• nothing here is as tricky as AVL rebalance

• you’re given unit tests

A3 has 4 phases.
0. Write an ArrayList clone

A3 has 4 phases.
0. Write an ArrayList clone

 (done in Lab 6!)

A3 has 3 phases.

A3 has 3 phases.
1. Write a min-heap to implement a priority

queue with operations:

•boolean add(V value, P priority)

• V peek();

• V poll();

A3 has 3 phases.
1. Write a min-heap to implement a priority

queue with operations:

•boolean add(V value, P priority)

• V peek();

• V poll();

use AList to handle growing the array!

A3 has 3 phases.
1. Write a min-heap to implement a priority

queue with operations:

•boolean add(V value, P priority)

• V peek();

• V poll();

2. Write a hash table.

use AList to handle growing the array!

A3 has 3 phases.
1. Write a min-heap to implement a priority

queue with operations:

•boolean add(V value, P priority)

• V peek();

• V poll();

2. Write a hash table.
3. Use the hash table to augment the heap,

making the following operations efficient:

•boolean contains(V v);

• void changePriority(V v, P newP);

use AList to handle growing the array!

A3 has 3 phases.
1. Write a min-heap to implement a priority

queue with operations:

•boolean add(V value, P priority)

• V peek();

• V poll();

2. Write a hash table.
3. Use the hash table to augment the heap,

making the following operations efficient:

•boolean contains(V v);

• void changePriority(V v, P newP);

use AList to handle growing the array!

(not using AList to handle
growing the array)

Phase 3 - Hash your Heap
In Phase 1 Heap:

• contains requires searching the whole tree.

• changePriority requires searching the

whole tree, then bubbling down or up.

4

56

21 148 35

22 5538 10 20 19

Phase 3 - Hash your Heap
In Phase 3 Heap:

• Each heap value is stored in the heap and in a

HashTable that tracks its index in the heap.
4

56

21 148 35

22 5538 10 20 19

4

1

0
8 4
6 1

38 8
35 6
21 3
10 10
19 12

Heap: [4 6 5 21 8 14 35 22 38 55 10 20 19]

HashTable<V, Integer>:

 0 1 2 3 4 5 6 7 8 9 10 11 12

value i (index in heap)

Phase 3 - Hash your Heap
In Phase 3 Heap:

• Each heap value is stored in the heap and in a

HashTable that tracks its index in the heap.
4

56

21 148 35

22 5538 10 20 19

4

1

0
8 4
6 1

38 8
35 6
21 3
10 10
19 12

Heap: [4 6 5 21 8 14 35 22 38 55 10 20 19]

HashTable<V, Integer>:

 0 1 2 3 4 5 6 7 8 9 10 11 12

value i (index in heap)

To maximize confusion:
• The hash table is used to map Heap values to

heap indices.
• The hash table’s keys are the heap’s values

Phase 3 - Hash your Heap
In Phase 3 Heap:

boolean contains(V v):
 true iff map contains key v

4

56

21 148 35

22 5538 10 20 19

4

1

0
8 4
6 1

38 8
35 6
21 3
10 10
19 12

Heap: [4 6 5 21 8 14 35 22 38 55 10 20 19]

HashTable<V, Integer>:

 0 1 2 3 4 5 6 7 8 9 10 11 12

value i (index in heap)

Phase 3 - Hash your Heap
In Phase 3 Heap:

void changePriority(V v, P newP):
 i = map.get(v);

 change priority of heap entry

 bubble it up or down

4

56

21 148 35

22 5538 10 20 194

1

0
8 4
6 1

38 8
35 6

Heap: [4 6 5 21 8 14 35 22 38 55 10 20 19]

HashTable<V, Integer>:

 0 1 2 3 4 5 6 7 8 9 10 11 12

value i (index in heap)

Questions?

Origins of the term “hash”

Hans Peter Luhn (July 1, 1896 – August 19, 1964) was a researcher in
the field of computer science, and, Library & Information Science for IBM

https://en.wikipedia.org/wiki/IBM

The Map ADT
• In math, a map is a function.

• What is a function, anyway?

The Map ADT
• In math, a map is a function.

• If F is a map then 
 F(a) —> b 
means that a maps to b.

• F has a:

• domain - the set of values F maps from

• range - the set of values that F maps a domain element to

• codomain - the set of all possible values in the range’s type,
regardless of whether any element in the domain maps to it

The Map ADT

0

11
2
3
4
5
6
7
8
9

Thing[] a = new Thing[10];

Thing
int thingField1
int thingField2

0
0

Thing
int thingField1
int thingField2

1
1

The Map ADT
• Arrays are great!

• Domain: 0..a.length

• Range: all elements
stored in the array

• Codomain: the type of
elements stored in the
array.

0

11
2
3
4
5
6
7
8
9

Thing[] a = new Thing[10];

Thing
int thingField1
int thingField2

0
0

Thing
int thingField1
int thingField2

1
1

The Map ADT
• Arrays are great!

• Domain: 0..a.length

• Range: all elements
stored in the array

• Codomain: the type of
elements stored in the
array.

0

11
2
3
4
5
6
7
8
9

Thing[] a = new Thing[10];

Thing
int thingField1
int thingField2

0
0

Thing
int thingField1
int thingField2

1
1

Domain:
Range:

Codomain: Thing objects.We get to choose the codomain.

The Map ADT
• Arrays are great!

• We get to choose the codomain - type of the
array.

• Wouldn’t it be nice to choose the domain as
well?

• The Map ADT represents a mapping from keys
to values.

• we get to choose the type of the keys (domain) AND the
values (codomain)

The Map Interface
public interface Map<K,V> {
 /** Returns the value to which the specified key
 * is mapped, or null if this map contains no
 * mapping for the key. */
 V get(Object key);

 /** Associates the specified value with the
 * specified key in this map */
 V put(K key, V value);

 /** Removes the mapping for a key from this map
 * if it is present */
 V remove(Object key);

 // more methods
}

https://stackoverflow.com/questions/857420/what-are-the-reasons-why-map-getobject-key-is-not-fully-generic

Implementing Map<K,V>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array 0

11
2
3
4
5
6
7
8
9

“bear”

“cat”

“auk”

h(k) = k % A.length
put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

“dog”

“ape”

Implementing Map<K,V>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array 0

11
2
3
4
5
6
7
8
9

“bear”

“cat”

“auk”

h(k) = k % A.length
put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

“dog”

“ape”

• Use a HashTable (or a HashSet of Key-Value pairs)

• Hash the key to determine array index

• Store values in array

• Store (K,V) pairs in  
the array.

Implementing Map<K,V>

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

Hash Tables: Load Factor

entries in table

size of the array

Hash Tables: Load Factor

How full is your hash table?

 
Load factor λ =

The average bucket size is λ.

Average-case runtime is O(λ).

entries in table

size of the array

Hash Tables: Load Factor
entries in table

size of the array

Hash Tables: Load Factor
 
Load factor λ =

 
Average-case runtime is O(λ).

• If λ is large, runtime is slow.

• If λ is small, memory is wasted.

Strategy: grow or shrink array when λ gets too
large or small.

entries in table

size of the array

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

(14 % 3) -> 2

14 “cat”

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

(14 % 3) -> 2

14 “cat”

(24 % 3) -> 0

24 “ape”

Growing the array
Also requires rehashing: put each element where in belongs in
the new array.

0
1
2
3
4
5

0
1
2
3

10 “bear” 1 “dog”

11 “auk” 14 “cat”

24 “ape”

Exercise: Grow the array to size 6 and rehash:

ABCD:

How many elements are in the most full bucket?

A. 1

B. 2

C. 3

D. 4

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits N buckets
visits n entries (total)

could be O(n) =(

Let N = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could be O(n) =(

visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could be O(n) =(

visits C buckets

Let C = array size
Let n = number of entries

Overall runtime is:
• worst-case O(C + n2)

• average-case O(C + n)

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size
Let n = number of entries

We can’t have duplicate keys: all (k,v) pairs were already in the map!

Consequence: we don’t need to search the bucket when rehashing

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size
Let n = number of entries

Overall runtime is:
• worst-case O(C + n)

We can’t have duplicate keys: all (k,v) pairs were already in the map!

Consequence: we don’t need to search the bucket when rehashing

Hashing Multiple Integers
• Various heuristic methods:

• (a + b + c + d) % N

• (ak^1 + bk^2 + ck^3 + dk^4) % N

Hashing Strings
• Interpret ASCII (or unicode) representation as an

integer.

• Java String uses:  
s[0]*31^(n-1) + s[1]*31^(n-2)+ … +s[n-1]

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Linear Probing

• Problem with linear probing:

• Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 h = hash(key);

 while A[h] is full:

 h = (h+1) % N

 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 H = hash(key);

 i = 0;

 while A[h] is full:

 h = (H + i2) % N

 i++;

 A[h] = value

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):

 H = hash(key);

 i = 0;

 while A[h] is full:

 h = (H + i2) % N

 i++;

 A[h] = value

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

put(key):

 H = hash(key);

 i = 0;

 while A[h] is full:

 h = (H + i2) % N

 i++;

 A[h] = value

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

put(key):

 H = hash(key);

 i = 0;

 while A[h] is full:

 h = (H + i2) % N

 i++;

 A[h] = value

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

0
1
0, 1, 4
1, 2
0, 1, 4, 9
1, 2, 5
0, 1, 4, 9, 6
1, 2, 5, 10, 7

Hashing in Java
• Object has a hashCode method. 

• It needs to have the properties of a hash
function!

1. Deterministic: always returns the same value for the

same object.

2. Equal objects have equal hash codes.
In Java, “equal” means whatever the equals method says. 

Consequence: if you change the definition of equals (e.g., by
overriding it), you may have to override hashCode make sure it’s
consistent!

By default, this returns the object’s address in memory.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

Hashing in Java
Consequence: if you override equals, you may have to
override hashCode to match.
class Person {
 String firstName;
 String lastName;

 public boolean equals(Person p) {
 return firstName.equals(p.firstName)
 && lastName.equals(p.lastName);
 }

 public int hashCode() {
 return auxHash(firstName)
 + auxHash(lastName);
 }
}

Open Addressing: Runtime
• May be faster, but may not be. Depends on

keys.

• There’s no free lunch: worst-case is always
O(n).

• In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Further Reading
• CLRS 11.5: Perfect Hashing

• You can guarantee O(1) lookups and insertions if the
set of keys is fixed

• C++ implementations from Google:

• sparse_hash_map - optimized for memory overhead

• dense_hash_map - optimized for speed

http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/

Map and HashMap
• Map is an ADT

• HashMap is an implementation of a Map using a
Hash Table.

• TreeMap is a thing too - some of you already wrote
one!

• AVL tree: store a key and a value in each node; BST property
applies to keys only

• Example: TreeMap<String, Integer> maps words to the number
of times they have been seen

TreeMap vs HashMap
• Runtime of put, get, and remove:

• TreeMap has O(log n) worst and expected

• HashMap has O(1) expected, O(n) worst; better in
practice

• Other considerations:

• TreeMaps enable sorted traversal of keys

• HashMaps are space-inefficient if load factor is small

