
CSCI 241
Lecture 10

Binary Search Trees: Removal, Balanced BSTs

Announcements
• Reminder: today is the deadline to declare

the major!

• To be eligible to apply students must be in the last of
(241, 247, 301) and submit an application and major
declaration card—both are available from the CS
Advising Office, CF 459.

Happenings
Monday, 2/4 – CSCI Faculty Candidate: Research Talk – 4 pm in CF 316
Tuesday, 2/5 – CSCI Faculty Candidate: Teaching Talk – 4 pm in CF 316
Tuesday, 2/5 – ACM Research Talk: Nick Majeske! – 5 pm in CF 316
Wednesday, 2/6 – PNNL Info Table – 11 am – 3 pm in the CF 4th Floor Foyer
Wednesday, 2/6 – Tech Talk: PNNL – 5 pm in CF 105
Wednesday, 2/6 – Peer Lecture Series: Debugging Workshop – 5 pm in CF 420
Thursday, 2/7 – Winter Career Fair w/ STEM Focus – 11 am – 3 pm in the MAC
Gym

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Facm-research-talk-instructor-nicholas-majeske&data=02%7C01%7Cwehrwes%40wwu.edu%7C13d27849beba4c3fc93708d687c8564d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636845691894164279&sdata=txzcCa6Xd9Ce5LKeXn8ImmpAcpms0%2BQMFB06nnxFkZo%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpnnl-info-table&data=02%7C01%7Cwehrwes%40wwu.edu%7C13d27849beba4c3fc93708d687c8564d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636845691894320535&sdata=PyD5YPibgJ1jgAFizLPIZ3PnETp5yAe2c6Xo7Hm2Ibc%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-pacific-northwest-national-lab&data=02%7C01%7Cwehrwes%40wwu.edu%7C13d27849beba4c3fc93708d687c8564d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636845691894320535&sdata=2R%2FmEQhsyMEw41WoSmi3lCe4fLTrOgjWSTCfA42FQis%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-debugging-workshop&data=02%7C01%7Cwehrwes%40wwu.edu%7C13d27849beba4c3fc93708d687c8564d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636845691894320535&sdata=jKjmefGb7rU34V5U4HiZjEVisxZ9r%2FERznLmLUTge7E%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.wwu.edu%2Fcareers%2Fwintercareerfair_students2019.shtml&data=02%7C01%7Cwehrwes%40wwu.edu%7C13d27849beba4c3fc93708d687c8564d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636845691894320535&sdata=DUFQJuihV5gE8TJSXwTIhfYdPeObnrEE4BdUKUiGV6A%3D&reserved=0

Goals (Wednesday and Today):

• Know the definition and uses of a binary search tree.

• Be prepared to implement, and know the runtime of,
the following BST operations:

• searching

• inserting

• deleting

• Know what a balanced BST is and why we want it.

Binary Search Tree
/** BST: a binary tree, in which:
 * -all values in left are < value
 * -all values in right are > value
 * -left and right are BSTs */
public class BST {
 int value;
 BST parent;
 BST left;
 BST right;
}

Binary Search Tree

> 5< 5 2

0 3 7 9

5

8

Searching a BST
search(t, 11)10

8 16

4 9 11 17

t:
11 > 10

search(right, 11)

Searching a BST
search(t, 11)10

8 16

4 9 11 17

t:
11 > 10

search(right, 11)

11 < 16

search(left, 11)

Searching a BST
search(t, 11)10

8 16

4 9 11 17

t:
11 > 10

search(right, 11)

11 < 16

search(left, 11)
11 == 11
found it! return.

Searching a BST - the
nonexistent case

search(t, 5)10

8 16

4 9 11 17

t:
5 < 10

search(left, 5)

Searching a BST - the
nonexistent case

search(t, 5)10

8 16

4 9 11 17

t:
5 < 10

search(left, 5)

5 < 8

search(left, 5)

Searching a BST - the
nonexistent case

search(t, 5)10

8 16

4 9 11 17

t:
5 < 10

search(left, 5)

5 < 8

search(left, 5)

5 > 4

search(right, 5)

null - not found!

Searching a BST:
What’s the runtime?

boolean search(BST t, int v):
 if t == null:
 return false
 if t.value == v:
 return true
 if t.value < v:
 return search(t.left)
 else:
 return search(t.right)

10

8 16

4 9 11 17

Runtime of search is O(h).

10

14

16

15

20

Worst: O(n) Best: O(log n)

We want our trees to
look more like this

Inserting into a BST

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10

insert(right, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10

insert(right, 11)

11 < 16

insert(left, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10

insert(right, 11)

11 < 16

insert(left, 11)
11 == 11
found it! no duplicates,
allowed; nothing to do.
return.

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10

insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10

insert(left, 5)

5 < 8

insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10

insert(left, 5)

5 < 8

insert(left, 5)

5 > 4

insert(right, 5)

null - not found. insert
it here!

5

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {

}
10

14

16

15

1. Spec

2. Base case

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;

}
10

14

16

15

2. Base case

1. Spec

3. Recursive definition:

If n has a left child, smallest(n) is

• the smallest value in the left subtree

4. Implement using recursive call

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

10

14

16

15

1. Spec

2. Base case

3. Recursive definition:

Smallest(n) is:

• the smallest value in the left subtree, or

• n.value if no left subtree exists.

4. Implement using recursive call

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
 return minimum(n.left);
}

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

10

14

16

15

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
 return minimum(n.left);
}

10

8 16

9 11 17

Deleting a node from a BST

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

10

8 16

9 11 17

if (n is a leaf)
 replace parent’s child with null

x

Deleting a node from a BST:
Case 1

Three possible cases:

1. n has no children (is a leaf)
2. n has one child

3. n has two children

10

8 16

9 11 17
if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

x

x

10

16

9 11 17

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent

Deleting a node from a BST:
Case 2

10

169

11 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent

if (n has two children)

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?

• k is n’s successor (next in an in-order traversal)

• Everything else in n’s right subtree is bigger than it

• Everything in n’s left subtree is smaller than it

• k’s value can safely replace n’s…but now we have a duplicate.

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 17

12

Deleting a node from a BST: 
Case 3

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

11

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 17

12

Deleting a node from a BST: 
Case 3

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree (recursively!)

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why?

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

• k is the smallest node in n’s right subtree.

• if it had a left child, that child would have to be smaller!

Details
• Need to update root pointer if root is removed.

• Often can’t assume n.parent isn’t null - n may
be root

• To update parent’s child pointer, you need to
know which (L or R) child pointer to update.

• The approach presented differs from that in
CLRS and some other resources.

BST Remove

