CSCI 241
Lecture 10
Binary Search Trees: Removal, Balanced BSTs
Announcements

• Reminder: today is the deadline to declare the major!

• To be eligible to apply students must be in the last of (241, 247, 301) and submit an application and major declaration card—both are available from the CS Advising Office, CF 459.
Happenings

Monday, 2/4 – CSCI Faculty Candidate: Research Talk – 4 pm in CF 316
Tuesday, 2/5 – CSCI Faculty Candidate: Teaching Talk – 4 pm in CF 316
Tuesday, 2/5 – ACM Research Talk: Nick Majeske! – 5 pm in CF 316
Wednesday, 2/6 – PNNL Info Table – 11 am – 3 pm in the CF 4th Floor Foyer
Wednesday, 2/6 – Tech Talk: PNNL – 5 pm in CF 105
Wednesday, 2/6 – Peer Lecture Series: Debugging Workshop – 5 pm in CF 420
Thursday, 2/7 – Winter Career Fair w/ STEM Focus – 11 am – 3 pm in the MAC Gym
Goals (**Wednesday and Today**):

- Know the definition and uses of a binary search tree.

- Be prepared to implement, and know the runtime of, the following BST operations:
 - searching
 - inserting
 - deleting

- Know what a balanced BST is and why we want it.
/** BST: a binary tree, in which:
 * - all values in left are < value
 * - all values in right are > value
 * - left and right are BSTs */

public class BST {
 int value;
 BST parent;
 BST left;
 BST right;
}
Binary Search Tree

[Diagram of a binary search tree with nodes labeled 0, 2, 3, 5, 7, 8, 9, where nodes less than 5 are on the left and greater than 5 are on the right.]
Searching a BST

t: 10

8

4 9

16

11 17

search(t, 11)

11 > 10

search(right, 11)
Searching a BST

t: 10

11 > 10
search(right, 11)
11 < 16
search(left, 11)
Searching a BST

Let's search for the value 11 in the binary search tree (BST) `t`:

```
search(t, 11)
```

1. `11 > 10`:
 - Search the right subtree of 10

2. `11 < 16`:
 - Search the left subtree of 16

3. `11 == 11`:
 - Found the value 11

`found it! return.`
Searching a BST - the nonexistent case

\[
\text{t:} \quad \begin{array}{c}
10 \\
8 \\
4 \\
9 \\
16 \\
11 \\
17 \\
\end{array}
\]

\[
\text{search}(t, 5) \\
5 < 10 \\
\text{search(left, 5)}
\]
Searching a BST - the nonexistent case

```
search(t, 5)
5 < 10
search(left, 5)
5 < 8
search(left, 5)
```
Searching a BST - the nonexistent case

search(t, 5)
 5 < 10
 search(left, 5)
 5 < 8
 search(left, 5)
 5 > 4
 search(right, 5)
 null - not found!
Searching a BST: What’s the runtime?

```java
boolean search(BST t, int v):
    if t == null:
        return false
    if t.value == v:
        return true
    if t.value < v:
        return search(t.left)
    else:
        return search(t.right)
```

Runtime of search is $O(h)$. Worst: $O(n)$ Best: $O(\log n)$

We want our trees to look more like this
Inserting into a BST
Inserting into a BST

\[t: 10 \]

\[\begin{array}{c}
8 \\
4 \\
9 \\
11 \\
16 \\
17 \\
\end{array} \]

\[\text{insert}(t, 11) \]
\[11 > 10 \]
\[\text{insert}(\text{right}, 11) \]
Inserting into a BST

$t: \begin{array}{c}
\text{4} \\
\text{8} \\
\text{9} \\
\text{10} \\
\text{11} \\
\text{16} \\
\text{17} \\
\end{array}$

insert(t, 11)
11 > 10
insert(right, 11)
11 < 16
insert(left, 11)
Inserting into a BST

```plaintext
insert(t, 11)
10
8
11 > 10
insert(right, 11)
16
11 < 16
insert(left, 11)
4
9
11 == 11
17
found it! no duplicates, allowed; nothing to do.
return.
```
Inserting into a BST - the nonexistent case

\[t: \quad \begin{array}{c} 10 \\ \end{array} \]

\[\text{insert}(t, 5) \]
\[5 < 10 \]
\[\text{insert(left, 5)} \]
Inserting into a BST - the nonexistent case

\[
\begin{align*}
t: & \quad 10 \\
8 & \quad \text{insert}(t, 5) \\
4 & \quad 9 \\
16 & \quad 11 \\
17 & \quad \text{insert}(\text{left}, 5) \\
\end{align*}
\]
Inserting into a BST - the nonexistent case

```
insert(t, 5)
5 < 10
insert(left, 5)
5 < 8
insert(left, 5)
5 > 4
insert(right, 5)
note - not found. Insert it here!
```
Write a method to find the smallest value in a BST:

1. Spec
 /** Returns min value in BST n.
 * pre: n is not null */
 public int minimum(Node n) {

2. Base case
Warm-up

Write a method to find the smallest value in a BST:

1. Spec
/** Returns min value in BST n. *
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
}

2. Base case

3. Recursive definition:
If n has a left child, smallest(n) is
• the smallest value in the left subtree

4. Implement using recursive call
Warm-up

Write a method to find the smallest value in a BST:

1. Spec
/** Returns min value in BST n. */
* pre: n is not null */

public int minimum(Node n) {
 if (n.left == null) {
 return n.value;
 }
 return minimum(n.left);
}

2. Base case

3. Recursive definition:
Smallest(n) is:
• the smallest value in the left subtree, or
• n.value if no left subtree exists.
Write a method to find the smallest value in a BST:

```java
/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
    if (n.left == null)
        return n.value;
    return minimum(n.left);
}
```
Deleting a node from a BST

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children
Deleting a node from a BST: Case 1

Three possible cases:
1. **n has no children (is a leaf)**
2. n has one child
3. n has two children

if (n is a leaf)
 replace parent’s child with null
Deleting a node from a BST: Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent
Deleting a node from a BST: Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent
Deleting a node from a BST: Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
let \(k = \text{min node in right subtree} \)
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

If (n has two children)
let \(k = \text{min node in right subtree} \)
replace n’s value with k’s value

Can we do that?
- \(k \) is n’s **successor** (next in an in-order traversal)
- Everything else in n’s right subtree is bigger than it
- Everything in n’s left subtree is smaller than it
- k’s value can safely replace n’s… but now we have a duplicate.
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
let k = min node in right subtree
replace n’s value with k’s value
remove k from n’s right subtree
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
let k = min node in right subtree
replace n’s value with k’s value
remove k from n’s right subtree
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree (recursively!)
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
let k = min node in right subtree
replace n’s value with k’s value
remove k from n’s right subtree

this has to be either Case 1 or Case 2!
Deleting a node from a BST: Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

this has to be either Case 1 or Case 2!

Why?
Deleting a node from a BST: Case 3

Three possible cases:

1. n has no children (is a leaf)
2. n has one child
3. n has two children

if (n has two children)

let k = min node in right subtree
replace n’s value with k’s value
remove k from n’s right subtree

this has to be either Case 1 or Case 2!

Why? Rewind to before we removed it:
Deleting a node from a BST: Case 3

Three possible cases:
1. \(n \) has no children (is a leaf)
2. \(n \) has one child
3. \(n \) has two children

if (\(n \) has two children)
let \(k = \text{min node in right subtree} \)
replace \(n \)'s value with \(k \)'s value
remove \(k \) from \(n \)'s right subtree

this has to be either Case 1 or Case 2!

Why? Rewind to before we removed it:
• \(k \) is the smallest node in \(n \)'s right subtree.
• if it had a left child, that child would have to be smaller!
Details

• Need to update root pointer if root is removed.

• Often can’t assume n.parent isn’t null - n may be root

• To update parent’s child pointer, you need to know which (L or R) child pointer to update.

• The approach presented differs from that in CLRS and some other resources.