
CSCI 241
Lecture 8:


Abstract Data Types

Introduction to Trees



Announcements
• A1: Look into the future: read the rubric!


• Submitting late (using slip days or otherwise) 
requires sending me email after you submit.



Goals:
• Understand the motivation for trees:


• To model tree-structured data.


• To implement abstract data types.


• Understand the definition of a tree.


• Know the basic terminology associated with trees:


• Root, child, parent, leaf, height, depth, subtree, descendent, ancestor


• Be able to write a tree class and simple recursive 
methods such as size, height, and traversals.



Last Time: 
Big-Deal CS Concept #1: Runtime



Big-Deal CS Concept #2: 
Interface vs Implementation 

and Abstract Data Types

An abstract data type specifies only interface, 
not implementation

What the operations do

How they are accomplished



Abstract Data Types: 
Examples

• List, Queue, Stack


• Set


• Tree


• Priority Queue


• Map


• Graph
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Interface vs Implementation: 
Example

Cabinet(interface)

(Implementation 1)
FilingCabinet PilingCabinet

(Implementation 2)



Interface vs Implementation: 
Example

Cabinet:

• Contains(item) - returns true iff item is in the cabinet

• Add(item) - adds item to the cabinet

• Remove(item) - removes item from the cabinet if it exists


FilingCabinet implements Cabinet:

Contains(item):


look up drawer by first letter range 
find folder by first letter 
search folder for item 
return true if item is found, false otherwise
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(short for “if and only if”)



Comparing Implementations
class FilingCabinet:

• Contains(item):


look up drawer by first letter range 
find folder by first letter 
search folder for item 
return true if item is found, false otherwise 

class PilingCabinet:

• Contains(item):

for each drawer: 
exhaustively search drawer 
if found, return true 

return false



Comparing Implementations

class FilingCabinet:

• Add(item):


look up drawer by first letter range 
find folder by first letter 
insert item into folder 

class PilingCabinet:

• Add(item):


open random drawer 
insert item into drawer





Is an array an ADT?



ADTs and Runtime: 
Why we care

Class: ArrayList LinkedList
Backing storage: array chained nodes

add(i, val) O(n) O(n)
add(0, val) O(n) O(1)
add(n, val) O(1) O(1)

get(i) O(1) O(n)
get(0) O(1) O(1)
get(n) O(1) O(1)

Runtime comparison of List implementations:

Assume: i = arbitrary index.    n = last index + 1.



Linked List
public class ListNode { 
  int value; 
  ListNode next; 
}



Linked List
public class List { 
  int value; 
  List next; 
}

The node is the list. 

Next points to the tail of the list (also a list!)



Binary Tree
public class Tree { 
  int value; 
  Tree left; 
  Tree right; 
}

The node is the tree.

left points to the left child of the tree (also a tree!)

right points to the right child of the tree (also a tree!) 
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Tree - Definition

Tree: like a linked list, but:

• Each node may have zero or more 

successors (children)


• Each node has exactly one 
predecessor (parent) except the 
root, which has none


• All nodes are reachable from root


Binary tree: A tree, but:


• Each can have at most two 
children (left child, right child)



Tree Terminology
M is the root of this tree

G is the root of the left subtree of M


B, H, J, N, S are leaves (have no children)

N is the left child of P

S is the right child of P


P is the parent of N


M and G are ancestors of D


P, N, S are descendants of W


J is at depth 2 (length of path from root)

The subtree rooted at W has height (length 
of longest path to a leaf) of 2


A collection of several trees is called a ____?  

M

G W

PJD

NHB S



public class BinaryTreeNode { 
  private int value; 
  private BinaryTreeNode parent; 
  private BinaryTreeNode left; // left subtree 
  private BinaryTreeNode right; // right subtree 

} 

public class GeneralTreeNode { 
  private int value; 
  private GeneralTreeNode parent; 
  private List<GeneralTreeNode> children; 
}

(null if no left child)

(null if no right child)



Why do we need these?



Why do we need these?
to represent hierarchical structure.
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Why do we need these?
to represent hierarchical structure.

Syntax Trees:


• In textual representation, 
parentheses show 
hierarchical structure


• In tree representation, 
hierarchy is explicit in the 
tree’s structure

((2+3) + (5+7))

+

2 3 5 7

+

+

Also used for natural languages and programming languages!



Why do we need these?
to implement various ADTs efficiently.

Height of a balanced binary tree is O(log n)


Consequence: Many operations (find, insert, …) can be 
done in O(log n) in carefully-designed trees.

TreeSet, TreeMap
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• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree
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Thinking about trees 
recursively

• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree
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Thinking about trees 
recursively

• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree
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Operations on trees

• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:



Operations on trees

• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

   if t == null: 
      return false

   if t.value == v: return true

return findVal(t.left) 
    || findVal(t.right)



Tree Traversals

• A binary tree is


• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
   if t == null: 
      return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)



Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

   if t == null: 
      return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)
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Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

   if t == null: 
      return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)
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ABCD: T is a reference to the 
node with value 5. What is printed 
by the call printTree(T)?


A. 5 4 2 7 8

B. 7 4 8 5 2

C. 7 8 4 2 5

D. 5 4 7 8 2


T



Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:


1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

post-order traversal:

1. Process left subtree

2. Process right subtree

3. Process root

in-order traversal:

1. Process left subtree

2. Process root

3. Process right subtree



Why do we need these?
to represent hierarchical structure.

Quadtrees in graphics and simulation:

https://www.youtube.com/watch?v=fuexOsLOfl0

https://www.youtube.com/watch?v=fuexOsLOfl0


Practice Exercise
• Write the values printed by a:


• pre-order


• in-order


• post-order


traversal of this tree.
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Terminology - Self-Quiz

M

G W

PJD

NHB S

root

subtree


leaf

child

parent


ancestor


descendant


depth


height



