CSCI 241

Lecture 8:
Abstract Data Types
Introduction to Trees

Announcements

e A1: Look into the future: read the rubric!

e Submitting late (using slip days or otherwise)
requires sending me email after you submit.

Goals:

e Understand the motivation for trees:

e TJo model tree-structured data.

 TJo implement abstract data types.
e Understand the definition of a tree.

* Know the basic terminology associated with trees:

e Root, child, parent, leaf, height, depth, subtree, descendent, ancestor

* Be able to write a tree class and simple recursive
methods such as size, height, and traversals.

Last Time:
Big-Deal CS Concept #1: Runtime

Big-Deal CS Concept #2:
Interface vs Implementation
and Abstract Data Types

What the operations do

A

An abstract data type specifies only interface,
not implementation

v

How they are accomplished

Abstract Data Types:
Examples

List, Queue, Stack

Collection Interface
S et <<interface>>

Collection

|

<<interface>> <<interface>> <<interface>>

- V.
[ree Set - Queue

Priority Queue

LinkedHashSet <<|n‘t erface>> .
Navigable Set | oo > |mp|em ents
A

— extends

Map

Graph

Abstract Data Types:
Examples

Collection Interface

<<<<<<<<<<<<

List, Queue, Stack (145) =

Set (Weeks 4,5,7)

<<interface>>
SSSSSSSS

<<interface>>

Tree (Weeks 4-6; A2) ' T s

Priority Queue (Week 6; A3)
Map (Week 7; A3)

Graph (Weeks 8-9; A4)

Interface vs Implementation:
Example

(interface) Cabinet

/ N\

FilingCabinet PilingCabinet
(Implementation 1) (Implementation 2)

Interface vs Implementation:
Example

Cabinet: /(short for “if and only if”)

e (Contains(item) - returns true iff item is in the cabinet
e Add(item) - adds item to the cabinet
* Remove(item) - removes item from the cabinet if it exists

Interface

FilingCabinet implements Cabinet:
Contains(item):
look up drawer by first letter range
find folder by first letter
search folder for item
return true 1f item is found, false otherwise

Implementation

Comparing Implementations

class FilingCabinet:
e Contains(item):
look up drawer by first letter range
find folder by first letter
search folder for item
return true 1i1f item i1s found, false otherwise
class PilingCabinet:
e Contains(item):
for each drawer:
exhaustively search drawer
1f found, return true

return false

Comparing Implementations

class FilingCabinet:
e Add(item):
look up drawer by first letter range
find folder by first letter
insert item into folder
class PilingCabinet:
e Add(item):
open random drawer

insert item into drawer

Collection Interface

<<interface>>

Collection

<<interface>> <<interface>>
Set ' Queue

LinkedHashSet <<'”.terfa°e>> .
Navigable S et | * 1IN |pIe| nents
A

— extends

Is an array an ADT?

AD s and Runtime:
Why we care

Runtime comparison of List implementations:

ArrayList LinkedList
array chained nodes
O(n) O(n)

O(n) O(1)

O(1) O(1)

O(1) O(n)

O(1) O(1)

O(T1) O(1)

Assume: | = arbitrary index.

n = last index + 1.

Linked List

public class ListNode {
int value;
ListNode next;

Linked List

public class List {
int value;
List next;

}

The node is the list.
Next points to the tail of the list (also a list!)

Binary Iree

public class Tree {
int value;
Tree left;

Tree right;
}

The node is the tree.
left points to the left child of the tree (also a tree!)
right points to the right child of the tree (also a tree!)

Tree - Definition

Tree: like a linked list, but: /®\@ /@)\@
e Each node may have zero or more
successors (children) (8) O (8

e Each node has exactly one
predecessor (parent) except the
root, which has none

e All nodes are reachable from root /@
Binary tree: A tree, but: @) 6)
e Each can have at most two 5

children (left child, right child) @

Not a tree List-like tree

General tree Binary tree

Tree Terminology

M is the root of this tree

G is the root of the left subtree of M @
B, H, J, N, S are leaves (have no children)

N is the left child of P e @
S is the right child of P

P is the parent of N

M and G are ancestors of D ° Q °

P N, S are descendants of W

J is at depth 2 (length of path from root) e a o e

The subtree rooted at W has height (length
of longest path to a leaf) of 2

A collection of several trees is called a ?

public class BinaryTreeNode {
private int wvalue;
private BinaryTreeNode parent; (null if no left child)
private BinaryTreeNode left; // left subtree
private BinaryTreeNode right; // right subtree

(null if no right child)

public class GeneralTreeNode ({
private int wvalue;
private GeneralTreeNode parent;
private List<GeneralTreeNode> children;

Why do we need these?

Why do we need these?

to represent hierarchical structure.

Why do we need these?

to represent hierarchical structure.

neaa 2013 NCAA DIVISION | MEN'S BASKETBALL CHAMPIONSHIP BRACKET

FINAL FOUR
SAN ANTONIO

NATIONAL
CHAMPIONSHIP

—

Why do we need these?

to represent hierarchical structure.

. Assistant Attorney
/\-/\\ iernal Audit BOARD OF TRUSTEES General
/ ir. Antonia Allen ..
Kerena Higgins
WASHINGTON UNIVERSITY Paul Dunn Sabah Randhawa
Organizational Structure e o
overnme Provost and Vice
Relations Faculty Senate President for
Dir. Becca Kenna- and Faculty . .
Schenk Committees Academic Aff_alrs
| Brent Carbajal
Vice President for Vice President Vice President for Vice President Associate Vice College of Business
University Relations for Business and Enrollment and Associated for University Prss'd?"t ::;”. B e
and Marketing Financial Affairs Student Services Students Advancement AcaB 'em;:,:\t clle Dean Scott Young
Donna Gibbs Richard Van Den Hul Melynda Huskey Stephanie Bowers rian Bdrton Fairhaven College
Research & Graduate of Interdisciplinary
School Studies
Communications Associate Assistant Dean of Students/ WWU Foundation —| Vice Provost/Dean | Dean Jack Herring
and Marketing — - Vice President — Vice President ——— Associated Students — Gautam Pillay
Dir. Paul Cocke Brian Sullivan Kunle Ojikutu Dean Ted Pratt Advancement College of Fine and
o . . _Services — Undergraduate —— Performing Arts
Web Communication Public Safety/ Campus Recreation Student Outreach Chief Operating Officer Education Dean Kit Spicer
Technologies —{ [University Police — Services Services Mark Brovak Ve Baves:]
Dir. Max Bronsema Dir. Darin Rasmussen Dir. Adam Leonard Assoc. Dean/Dir. Steven Vanderstaay Huxley College of
Renee Collins Donor Relations and the Environment
Small Business Environmental Counseling Center Special Events Information — Dean
Development Center —| |~ Health and Safety Dir. Shari Robinson Office of Student Life Senior Director Technology and CIO Steve Hollenhorst
Dir. CJ Seitz Dir. Sue Sullivan Assistant Dean — Mark Bagley Viea Fraves:
Prevention and Michael Sledge Chuck Lanham College of
Washington Campus Facilities Development — Wellness Services Development and R hesand
Compact — and Capital Budget Dir. Elva Munro Student Engagement/ Leadership Giving Equal Opportunity & | e —
Dir. Jennifer Hine Dir. Univ. Architect VU Facilities Assoc. Vice President Employment Diversity By
Rick Benner | Student Health Ctr. Associate Dean Tim Szymanowski Vice Provost Paqui Paredes Méndez
Community Dir. Emily Gibson Eric Alexander Sue Guenter-Schlesinger
Relations —! Facilities Strategic Initiatives College of Science
Dir. Chris Roselli — Management University Registrar/disAbility Sr. Director EXentealEducaton . and Engineering
Dir. John Furman Residences —— Resources for Students Manca Valum Viten [P — Dean Brad Johnson
Dir. Leonard Jones Dir. David Brunnemer Earl Gibbons
Human Resources Alumni, Annual Giving Woodring College
— Asst. VP for HR Assistant Intercollegiate and Advancement IntemationallSradios - of Education
Chyerl Wolfe-Lee — VicePresident =~ —— Athletics Communications ~ — Dir. Vicki Hamblin ~ ~ | Dean Horacio Walker
Clara Capron Athletic Dir. Steve Card Asst. Vice President
| B.udget Office . L Deborah DeWees Special Academic Western Libraries
Dir. Linda Teater — Financial Aid Budget and Programs, Centers —— Dean Mark Greenberg
—— Administration WWU Alumni and Insltitutes
_ Admissions Dir. Linda Beckman Association
Dir. Cezar Mesquita . View site information
Academic/Career
New Student Dev. Services
| Services/Family Dir. Tina Loudon
Outreach

* Reports functionally to the Board of Trustees Audit Committee and
administratively to the Vice President for Business and Financial Affairs

AS Bookstore
Mgr. Peg Godwin

Dir. Ronna Biggs

8/16/2018

Why do we need these?

to represent hierarchical structure.

BVDS > Annotations > Dataterm > easy_output.txt

DAVIS > Annotations_old > Evaluation >

FBMS > ImageSets » = README.md 7 grid.py

SegTrackv2 > JPEGImages > Segmentations > homography I

timelapse » = README.md model.model

Results > my_results I

output.txt
paper I
test |
train.txt

train.txt.model
train.txt.range
train.txt.scale
train.txt.scale.out
__ train.txt.scale.png

Why do we need these?

to represent hierarchical structure.

Syntax Trees:
((2+3) + (5+7))
e |n textual representation,
parentheses show

hierarchical structure

* |n tree representation,
hierarchy is explicit in the
tree’s structure @

Also used for natural languages and programming languages!

Why do we need these?

to implement various ADTs efficiently.

TreeSet, TreeMap

Height of a balanced binary tree is O(log n)

Consequence: Many operations (find, insert, ...) can be
done in O(log n) in carefully-designed trees.

N
o e

Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:
e value
* aleft binary tree

* aright binary tree

Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:

e value

* aleft binary tree /\/ \
* aright binary tree / \/\

Thinking about trees
recursively

P

A binary tree is
e Empty, or
* Three things:
e value

* aleft binary tree

* aright binary tree

Operations on trees

often follow naturally from the definition of a tree:

A binary tree is Find v in a binary tree:
e Empty, or (base case - not found!)

* Three things:

e value (base case - is this v?)
e a left binary tree (recursive call - is v in left?)

* aright binary tree (recursive call - is v in right?)

Operations on trees

often follow naturally from the definition of a tree:

A binary tree is
e Empty, or
* Three things:
e value
* aleft binary tree

* aright binary tree

Find v In a binary tree:
boolean findVal (Tree t, int v):

(base case - not found!)
if t == null.:
return false

(base case - is this v?)

if t.value == v: return true

(recursive call - is v in left?)
return findVal (t.left)

| | £findVal (t.right)
(recursive call - is v In right?)

Tree Traversals

Print (or otherwise process) every node in a tree:

* A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null.:
return

* Three things:

e value (print this node’s value)
System.out.println(t.value)

e aleft binary tree (recursive call - print left subtree)
printTree (t.left)

* aright binary tree (recursive call - print left subtree)
printTree (t.right)

Tree Traversals

Print (or otherwise process) every node in a tree:

A

oL

@

Print all nodes in a binary tree:
boolean printTree (Tree t):

(base case - nothing to print)
if t == null.:
return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree (t.left)

(recursive call - print left subtree)
printTree (t.right)

Tree Traversals

Print (or otherwise process) every node in a tree:

T\:/@)\ Print all nodes in a binary tree:

boolean printTree (Tree t):

D @ (base case - nothing to print)
if £ == null.:
@ return

ABCD: .T IS a reference tc? thg (print this node’s value)
node with value 5. What is printed System.out.println(t.value)

- ?
by the call printTree(T)* (recursive call - print left subtree)

g\. ? j g 57) 2 printTree (t.left)
C. 784925 (recursive call - print left subtree)

printTree (t.right)

D. 54782

Tree Traversals

*Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversails:

in-order traversal: post-order traversal:
1. Process left subtree 1. Process left subtree
2. Process root 2. Process right subtree

3. Process right subtree 3. Process root

Why do we need these?

to represent hierarchical structure.

Quadtrees in graphics and simulation:
https://www.youtube.com/watch?v=fuexOsL Of|0

https://www.youtube.com/watch?v=fuexOsLOfl0

Practice Exercise

* Write the values printed by a:

* pre-order ﬁ)\

INn-order a @
4

e post-order

traversal of this tree.

Terminology - Self-Quiz

root

subtree @

leaf

child @ @

parent

a t

dre](s:i:noc:ant Q Q °
depth

ONOBONO

