
CSCI 241
Lecture 7


Runtime Analysis



Announcements
• No quiz today!



Happenings
Monday, 1/28 – CS Faculty Candidate: Research Talk – 4 pm in CF 316
Tuesday, 1/29 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 316
Wednesday, 1/30 – Peer Lecture Series: BASH Workshop – 5 pm in CF 420
Thursday, 1/31 – Group Advising to Declare the Major – 3 pm in CF 420
Thursday 1/31 – CS Faculty Candidate: Research Talk – 4 pm in CF 226
Friday, 2/1 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 226

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fgroup-advising-declare-cs-major-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C00e788ec34744dd252f508d682521761%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636839686576121482&sdata=dXn6ja3N79N2Alc3hS6uN8es0ereYocVA5L30MQEA8Q%3D&reserved=0


Goals:

• Know the runtime complexity of the sorting 
algorithms we’ve covered.


• Understand the basics of analyzing the 
runtime of recursive algorithms.


• Gain experience counting operations and 
determining big-O runtime of simple iterative 
and recursive algorithms.



Runtime Analysis: Overview
• Why? We want a measure of performance 

where


• it is independent of what computer we run it on. 

• Dependence on problem size is made explicit. 
 

• it is simpler than a raw count of operations and 
focuses on performance on large problem sizes.

Solution: count operations instead of clock time.

Solution: express runtime as a function of n 
(or whatever variables define problem size)

Solution: ignore constants, analyze asymptotic runtime.




• How?


1. Count the number of primitive (constant-time) 
operations that occur over the entire execution of 
the algorithm. 
 
 
 

2. Drop constants and lower-order terms to find the 
asymptotic runtime class.

Runtime Analysis: Overview



Really? *any* constant?

• My MacBook Pro from 2013:                       3.17 gigaFLOPs


• Fastest supercomputer as of June 2018:    200 petaFLOPs


• Supercomputer is 63,091,482 times faster.

A practical argument:



z

n2 algorithm may be faster here!

n2 on a supercomputer

n on my macbook



 Common Complexities



Counting Operations
What’s a constant-time operation?


• Anything that doesn’t depend on the input 
size:


• Reading/writing from/to a variable or array location.


• Evaluating an arithmetic or boolean expression.


• Returning from a method.



Counting Operations

Key intuition: 

• These don’t take identical amounts of time, but the times are 

within a constant factor of each other.

• Same for running the same operation on a different computer.

What’s a constant-time operation?


• Anything that doesn’t depend on the input 
size:


• Reading/writing from/to a variable or array location.


• Evaluating an arithmetic or boolean expression.


• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;

return k;



Counting Operations
What’s not a constant-time operation?


• Anything that does depend on the input 
size, e.g.:


• Looping over all values in an array of size n.


• Recursively checking whether a string is a palindrome


• Sorting an array


• Most nontrivial algorithms / data structure operations 
we’ll cover in this class.



Counting Operations
What happens when the number of times 
executed is variable / depends on the data?


• We have to specify whether we want worst-
case, average-case (aka expected-case), or 
best-case runtime.
public int findMax(int[] a) {
  int currentMax = a[0];
  for (int i = 1; i < a.length; i++) {
    if (currentMax < a[i]) {
      currentMax = a[i];
    }
  }
}

# times executed 
depends on 
contents of a!



Counting Operations
What happens when the number of times 
executed is variable / depends on the data?


• Worst-case is usually the important one, 
with notable exceptions for algorithms that 
beat asymptotically faster algorithms in 
practice.


• Quicksort is worst-case O(n^2) but often 
beats MergeSort in practice



Counting Strategies:  
1. Simple counting

/** Insert val into the list in after pred.
 * Precondition: pred is not null */
public void addAfter(Node pred, int val) { 
  Node newNode = new Node(val); 
  new_node.next = pred.next; 
  pred.next = newNode; 
} 

/** A singly linked list node */
public class Node {
  int value;
  Node next;
  public Node(int v) {
    value = v;
  }
}

1
1
1



Counting Strategies:  
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
   loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
  loopBody(i);
  i++;
}

1 per iteration

1
1 per iteration

1 per iteration

How many iterations? 

i takes on values 0..n, of which there are n.



Counting Strategies:  
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
   loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
  loopBody(i);
  i++;
}

How many iterations? 

i takes on values 0..n, of which there are n.

1
n
n * runtime of loopBody
n

Total runtime:

1 + 2n + n*[runtime of loopBody]



Counting Strategies: 
2. Aggregate Analysis

Not as easy case:


1. Identify all primitive operations


2. Trace through the algorithm, reasoning about the loop 
bounds in order to count the worst-case number of 
times each operation happens.



// Sorts A using insertion sort
insertionSort(A):
  i = 0;
  while i < A.length:
    j = i;
    while j > 0 and A[j] < A[j-1]:
      swap(A[j], A[j-1])
      j--
    i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i? 

Counting Strategies: 
2. Aggregate Analysis



// Sorts A using insertion sort
insertionSort(A):
  i = 0;
  while i < A.length:
    j = i;
    while j > 0 and A[j] < A[j-1]:
      swap(A[j], A[j-1])
      j--
    i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i? 

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration 
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

Counting Strategies: 
2. Aggregate Analysis



// Sorts A using insertion sort
insertionSort(A):
  i = 0;
  while i < A.length:
    j = i;
    while j > 0 and A[j] < A[j-1]:
      swap(A[j], A[j-1])
      j--
    i++

AT MOST How many times do we call swap() during iteration i? 

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration 
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n2 - n) / 2

Counting Strategies: 
2. Aggregate Analysis

(n2 - n)/2  => n2 / 2 - n / 2 => n2 - n => O(n2)



What about recursion?
Much like loops:


1. How much work is actually done per call?


2. How many calls are made?


• This is simpler when the work per call is the same.


• Sometimes the work per call depends on n.



Operation Counting in 
Recursive Methods: Example

/** Prints the linked list starting at head */
printList(Node head):

  if head != null:
    print(head)
    printList(head.next)



Runtime Analysis: 
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
  if (A.length < 2):
    return
  mid = (end-start)/2
  
  mergeSort(A,start,mid)
  mergeSort(A,mid, end)

  merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)



Runtime Analysis: 
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
  if (A.length < 2):
    return
  mid = (end-start)/2
  
  mergeSort(A,start,mid)
  mergeSort(A,mid, end)

  merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)

1. How much work is actually done per call?




Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
  B = a deep copy of A
  i = start
  j = mid
  k = 0

Smaller thing

 goes first

Ran out of 
things in


 one list or 
the other

Copy 
remaining 

things from 
nonempty 

half


  while i < mid and j < end:
    if B[i] < B[j]:
      A[k] = B[i]
      i++
    else:
      A[k] = B[j]
      j++
    k++

 while i < mid:
  A[k] = B[i]
  i++, k++

while j < end:
  A[k] = B[j]
  j++, k++

O(1)

O(1)
O(1)O(1)



Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
  B = a deep copy of A
  i = start
  j = mid
  k = 0

Smaller thing

 goes first

Ran out of 
things in


 one list or 
the other

Copy 
remaining 

things from 
nonempty 

half


  while i < mid and j < end:
    if B[i] < B[j]:
      A[k] = B[i]
      i++
    else:
      A[k] = B[j]
      j++
    k++

 while i < mid:
  A[k] = B[i]
  i++, k++

while j < end:
  A[k] = B[j]
  j++, k++

O(1)



Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
  B = a deep copy of A
  i = start
  j = mid
  k = 0

Smaller thing

 goes first

Ran out of 
things in


 one list or 
the other

Copy 
remaining 

things from 
nonempty 

half


  while i < mid and j < end:
    if B[i] < B[j]:
      A[k] = B[i]
      i++
    else:
      A[k] = B[j]
      j++
    k++

 while i < mid:
  A[k] = B[i]
  i++, k++

while j < end:
  A[k] = B[j]
  j++, k++

O(1)

at most n  
=> O(n) iterations



Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
  B = a deep copy of A
  i = start
  j = mid
  k = 0

Smaller thing

 goes first

Ran out of 
things in


 one list or 
the other

Copy 
remaining 

things from 
nonempty 

half


  while i < mid and j < end:
    if B[i] < B[j]:
      A[k] = B[i]
      i++
    else:
      A[k] = B[j]
      j++
    k++

 while i < mid:
  A[k] = B[i]
  i++, k++

while j < end:
  A[k] = B[j]
  j++, k++

O(n)



Merge step merge(A, start, mid, end):
  B = a deep copy of A
  i = start
  j = mid
  k = 0

Smaller thing

 goes first

Ran out of 
things in


 one list or 
the other

Copy 
remaining 

things from 
nonempty 

half


  while i < mid and j < end:
    if B[i] < B[j]:
      A[k] = B[i]
      i++
    else:
      A[k] = B[j]
      j++
    k++

 while i < mid:
  A[k] = B[i]
  i++, k++

while j < end:
  A[k] = B[j]
  j++, k++

O(n)

at most n/2 => O(n)

by a similar argument:  

at most n/2 => O(n)



Runtime Analysis: 
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
  if (A.length < 2):
    return
  mid = (end-start)/2
  
  mergeSort(A,start,mid)
  mergeSort(A,mid, end)

  merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)

1. How much work is actually done per call?




Runtime Analysis: 
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
  if (A.length < 2):
    return
  mid = (end-start)/2
  
  mergeSort(A,start,mid)
  mergeSort(A,mid, end)

  merge(A, start, mid, end)

O(1)

O(1)

O(n)

O(?)
O(?)

1. How much work is actually done per call?




Runtime Analysis: 
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
  if (A.length < 2):
    return
  mid = (end-start)/2
  
  mergeSort(A,start,mid)
  mergeSort(A,mid, end)

  merge(A, start, mid, end)

O(1)

O(1)

O(n)

O(?)
O(?)

2. How How many calls are made?




… …

O(log n) 

levels

O
(n) each level

How many times can 
we divide n by 2 
before we hit 1?


n/2x = 1

n = 2x


x = log2 n 



Runtime Analysis: Quicksort
/** quicksort A[st..end]*/
quickSort(A, st, end):
  if (small):
    return

  mid = partition(A,st,end)

  quickSort(A,st,mid)
  quickSort(A,mid, end)

O(1)

O(n)

??



Runtime Analysis: Quicksort
/** quicksort A[st..end]*/
quickSort(A, st, end):
  if (small):
    return

  mid = partition(A,st,end)

  quickSort(A,st,mid)
  quickSort(A,mid, end)

O(1)

O(n)

??

If pivot splits array approximately in half each time, 
O(log n) levels of recursion just like mergesort.

If pivot is the min or max each time, O(n) levels of 
recursion, for a total runtime of O(n2)!

average 
(expected) 

case

worst 
case


