Announcements

• No quiz today!
Happenings

Monday, 1/28 – CS Faculty Candidate: Research Talk – 4 pm in CF 316
Tuesday, 1/29 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 316
Wednesday, 1/30 – Peer Lecture Series: BASH Workshop – 5 pm in CF 420
Thursday, 1/31 – Group Advising to Declare the Major – 3 pm in CF 420
Thursday 1/31 – CS Faculty Candidate: Research Talk – 4 pm in CF 226
Friday, 2/1 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 226
Goals:

• Know the runtime complexity of the sorting algorithms we’ve covered.

• Understand the basics of analyzing the runtime of recursive algorithms.

• Gain experience counting operations and determining big-O runtime of simple iterative and recursive algorithms.
Runtime Analysis: Overview

• Why? We want a measure of performance where
 • it is independent of what computer we run it on.
 Solution: count operations instead of clock time.
 • Dependence on problem size is made explicit.
 Solution: express runtime as a function of n (or whatever variables define problem size)
 • it is simpler than a raw count of operations and focuses on performance on large problem sizes.
 Solution: ignore constants, analyze asymptotic runtime.
Runtime Analysis: Overview

• How?

1. Count the number of primitive (constant-time) operations that occur over the entire execution of the algorithm.

2. Drop constants and lower-order terms to find the asymptotic runtime class.
Really? *any* constant?

A practical argument:

- My MacBook Pro from 2013: 3.17 gigaFLOPs
- Fastest supercomputer as of June 2018: 200 petaFLOPs
- Supercomputer is 63,091,482 times faster.
n^2 algorithm may be faster here!

n^2 on a supercomputer

$n = 0$ to $1\,000\,000\,000$

n on my macbook

n^2 algorithm may be faster here!
Common Complexities

Big-O Complexity Chart

Operations vs. Elements

- O(n!)
- O(2^n)
- O(n^2)
- O(n log n)
- O(n)
- O(log n), O(1)

Color Key:
- Horrible
- Bad
- Fair
- Good
- Excellent
Counting Operations

What’s a constant-time operation?

• Anything that **doesn’t** depend on the input size:

 • Reading/writing from/to a variable or array location.

 • Evaluating an arithmetic or boolean expression.

 • Returning from a method.
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:

 • Reading/writing from/to a variable or array location.

 int i = 2; int b = 4; a[i] = b;

 • Evaluating an arithmetic or boolean expression.

 int i = 0; int j = i+4; int k = i*j;

 • Returning from a method.

 return k;

Key intuition:

• These don’t take identical amounts of time, but the times are within a constant factor of each other.

• Same for running the same operation on a different computer.
Counting Operations

What’s **not** a constant-time operation?

- Anything that **does** depend on the input size, e.g.:
 - Looping over all values in an array of size n.
 - Recursively checking whether a string is a palindrome
 - Sorting an array
 - Most nontrivial algorithms / data structure operations we’ll cover in this class.
Counting Operations

What happens when the number of times executed is variable / depends on the data?

- We have to specify whether we want worst-case, average-case (aka expected-case), or best-case runtime.

```java
public int findMax(int[] a) {
    int currentMax = a[0];
    for (int i = 1; i < a.length; i++) {
        if (currentMax < a[i]) {
            currentMax = a[i]; // # times executed depends on contents of a!
        }
    }
}
```
Counting Operations

What happens when the number of times executed is variable / depends on the data?

• Worst-case is usually the important one, with notable exceptions for algorithms that beat asymptotically faster algorithms in practice.

• Quicksort is worst-case $O(n^2)$ but often beats MergeSort in practice
Counting Strategies:
1. Simple counting

/** A singly linked list node */
public class Node {
 int value;
 Node next;
 public Node(int v) {
 value = v;
 }
}

/** Insert val into the list in after pred. * Precondition: pred is not null */
public void addAfter(Node pred, int val) {
 Node newNode = new Node(val);
 new_node.next = pred.next;
 pred.next = newNode;
}
Counting Strategies:
1. Simple counting - for loop

```
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

// is equivalent to:

```
int i = 0;  // 1
while (i < n) {
    loopBody(i);  // 1 per iteration
    i++;  // 1 per iteration
}
```

How many iterations?
- i takes on values 0..n, of which there are n.
1. Simple counting - for loop

```java
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

Total runtime:

// is equivalent to: 1 + 2n + n*[runtime of loopBody]

```java
int i = 0; 1
while (i < n) { n
    loopBody(i); n * runtime of loopBody
    i++; n
}
```

How many iterations?

i takes on values 0..n, of which there are n.
Counting Strategies:
2. Aggregate Analysis

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop bounds in order to count the worst-case number of times each operation happens.
Counting Strategies: 2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted ?

AT MOST How many times do we call swap() during iteration i?
Counting Strategies: 2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A_{sorted}

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Number of swaps: 1 in 1st iteration $+ 2$ in 2nd iteration $+ ... + n$ in nth iteration

$1 + 2 + 3 + ... + n-1 + n = (n \times (n-1)) / 2 = (n^2 - n) / 2$
// Sorts A using insertion sort
insertionSortSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1 + 2 + 3 + ... + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

(n^2 - n)/2 => n^2 / 2 - n / 2 => n^2 - n => O(n^2)
What about recursion?

Much like loops:

1. How much work is actually done per call?

2. How many calls are made?

 • This is simpler when the work per call is the same.

 • Sometimes the work per call depends on n.
Operation Counting in Recursive Methods: Example

/** Prints the linked list starting at head */
printList(Node head):

 if head != null:
 print(head)
 printList(head.next)
**sort A[start..end] using mergesort */

mergeSort(A, start, end):
 if (A.length < 2):
 return \(O(1)\)
 mid = (end-start)/2 \(O(1)\)

mergeSort(A,start,mid) \(O(?)\)
mergeSort(A,mid, end) \(O(?)\)

merge(A, start, mid, end) \(O(??)\)
Runtime Analysis: MergeSort

```java
/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
    if (A.length < 2):
        return
    mid = (end-start)/2
    mergeSort(A, start, mid)  O(1)
    mergeSort(A, mid, end)    O(1)
    merge(A, start, mid, end, end)  O(??)

1. How much work is actually done per call?
```
Merge step

merge(A, start, mid, end):
B = a deep copy of A
i = start
j = mid
k = 0

while i < mid and j < end:
if B[i] < B[j]:
 A[k] = B[i]
 i++
else:
 A[k] = B[j]
 j++

while i < mid:
 A[k] = B[i]
i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1) O(1) O(1) O(1)

Smaller thing goes first
Ran out of things in one list or the other
Copy remaining things from nonempty half

Inv

<table>
<thead>
<tr>
<th>B</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>copied</td>
<td>not yet copied</td>
<td>copied</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>k</th>
<th>?</th>
</tr>
</thead>
</table>
merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 k++
 else:
 A[k] = B[j]
 j++
 k++

while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1)
Merge step

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1)

=> O(n) iterations

Smaller thing goes first
Ran out of things in one list or the other
Copy remaining things from nonempty half

Inv

B copied | not yet copied | copied | not yet copied

A merged | ?
Merge step

\[
\text{merge}(A, \text{start}, \text{mid}, \text{end}):\n\]
\[
\begin{align*}
B &= \text{a deep copy of } A \\
i &= \text{start} \\
j &= \text{mid} \\
k &= 0
\end{align*}
\]

\[
\text{while } i < \text{mid} \text{ and } j < \text{end}:
\]
\[
\begin{align*}
\text{if } B[i] < B[j]: \\
&\quad A[k] = B[i] \\
i &\quad \text{++} \\
j &\quad \text{++} \\
k &\quad \text{++}
\end{align*}
\]
\[
\text{else:}
\]
\[
\begin{align*}
&\quad A[k] = B[j] \\
j &\quad \text{++} \\
k &\quad \text{++}
\end{align*}
\]

\[
\text{while } i < \text{mid}:
\]
\[
\begin{align*}
&\quad A[k] = B[i] \\
i &\quad \text{++, k++}
\end{align*}
\]

\[
\text{while } j < \text{end}:
\]
\[
\begin{align*}
&\quad A[k] = B[j] \\
j &\quad \text{++, k++}
\end{align*}
\]

O(n)

Inv

\[
\begin{array}{c|c|c|c}
\hline
A & \text{merged} & \text{} & ? \\
\hline \\
\end{array}
\]

B

<table>
<thead>
<tr>
<th>copied</th>
<th>not yet copied</th>
<th>copied</th>
<th>not yet copied</th>
</tr>
</thead>
</table>

Smaller thing goes first

Ran out of things in one list or the other

Copy remaining things from nonempty half
Merge step

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0
 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++
 while i < mid:
 A[k] = B[i]
 i++, k++
 while j < end:
 A[k] = B[j]
 j++, k++

Smaller thing goes first
Ran out of things in one list or the other
Copy remaining things from nonempty half

by a similar argument:

at most n/2 => O(n)

at most n/2 => O(n)
Runtime Analysis: MergeSort

```java
/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
    if (A.length < 2):
        return O(1)
    mid = (end−start)/2 O(1)
    mergeSort(A,start,mid) O(?)
    mergeSort(A,mid, end) O(?)
merge(A, start, mid, end) O(??)
```

1. How much work is actually done per call?
Runtime Analysis: MergeSort

```java
/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
    if (A.length < 2):
        return
    mid = (end−start)/2
    mergeSort(A, start, mid)  O(1)
    mergeSort(A, mid, end)  O(1)

merge(A, start, mid, end)  O(n)
```

1. How much work is actually done per call?
Runtime Analysis: MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return O(1)
 mid = (end-start)/2 O(1)

mergeSort(A,start,mid) O(?)
mergeSort(A,mid, end) O(?)
merge(A, start, mid, end) O(n)

2. How many calls are made?
How many times can we divide n by 2 before we hit 1?

$n/2^x = 1$
$n = 2^x$
$x = \log_2 n$

O(log n) levels
O(n) each level
/** quicksort A[st..end]*/
quickSort(A, st, end):
 if (small):
 return \textcolor{green}{O(1)}
 mid = partition(A, st, end) \textcolor{red}{O(n)}

quickSort(A, st, mid) \textcolor{blue}{??}
quickSort(A, mid, end) \textcolor{blue}{??}
Runtime Analysis: Quicksort

/** quicksort A[st..end]*/
quickSort(A, st, end):
 if (small):
 return O(1)
 mid = partition(A, st, end) O(n)

 quickSort(A, st, mid) ??
 quickSort(A, mid, end) ??

If pivot splits array approximately in half each time, O(log n) levels of recursion just like mergesort.

If pivot is the min or max each time, O(n) levels of recursion, for a total runtime of O(n^2)!

average (expected) case

worst case