CSCI 241

Lecture 7
Runtime Analysis



Announcements

 No quiz today!



Happenings

Monday, 1/28 — CS Faculty Candidate: Research Talk — 4 pm 1in CF 316
Tuesday, 1/29 — CS Faculty Candidate: Teaching Talk — 4 pm in CF 316
Wednesday, 1/30 — Peer Lecture Series: BASH Workshop — 5 pm in CF 420

Thursc

T

ay, 1/31 — Group Advising to Declare the Major — 3 pm in CF 420

Nursd

ay 1/31 — CS Faculty Candidate: Research Talk — 4 pm in CF 226

Friday, 2/1 — CS Faculty Candidate: Teaching Talk — 4 pm in CF 226


https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fgroup-advising-declare-cs-major-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C00e788ec34744dd252f508d682521761%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636839686576121482&sdata=dXn6ja3N79N2Alc3hS6uN8es0ereYocVA5L30MQEA8Q%3D&reserved=0

Goals:

e Know the runtime complexity of the sorting
algorithms we’ve covered.

e Understand the basics of analyzing the
runtime of recursive algorithms.

e (Gain experience counting operations and
determining big-O runtime of simple iterative
and recursive algorithms.



Runtime Analysis: Overview

e Why? We want a measure of performance
where

e it is independent of what computer we run it on.
Solution: count operations instead of clock time.

* Dependence on problem size is made explicit.

Solution: express runtime as a function of n
(or whatever variables define problem size)

* it is simpler than a raw count of operations and
focuses on performance on large problem sizes.

Solution: ignore constants, analyze asymptotic runtime.



Runtime Analysis: Overview
e How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm.

. _and lower-order terms to find the

asymptotic runtime class.




Really? *any* constant?

A practical argument:
e My MacBook Pro from 2013: 3.17 gigaFLOPs

e Fastest supercomputer as of June 2018: 200 petaFLOPs

e Supercomputer is 63,091,482 times faster.



Input interpretation:

r N2 on a supercomputer

plot 7= 010 1000000000

63091482 n
n on my macbook

@ Enlarge | ¥, Data | @ Customize | A Plaintext | @ Interactive

1 x1018 |
8x1017
6 » l(ﬁllTE

4-1:::.‘75

109 3x109 6x10° 8x10° 1 x10°

n2 algorithm may be faster here!



Common Complexities

Big-O Complexity Chart
[Horribie] [sad]  rair | | cood [Bxcelient]




Counting Operations

What’s a constant-time operation?

 Anything that doesn’t depend on the input
size;

e Reading/writing from/to a variable or array location.

e Evaluating an arithmetic or boolean expression.

e Returning from a method.



Counting Operations

What’s a constant-time operation?

 Anything that doesn’t depend on the input
size;

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[1] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = 1+4; int k = 1i*7j;
e Returning from a method.
Key intuition:
e These don’t take identical amounts of time, but the times are
within a constant factor of each other.
e Same for running the same operation on a different computer.

return Kk;



Counting Operations

What’s not a constant-time operation?

 Anything that does depend on the input
size, e.g.:

e |Looping over all values in an array of size n.
e Recursively checking whether a string is a palindrome
e Sorting an array

e Most nontrivial algorithms / data structure operations
we’ll cover In this class.



Counting Operations

What happens when the number of times
executed is variable / depends on the data?

* \We have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.

public int findMax(int[] a) {

int currentMax = a[0];
for (int i = 1; i < a.length; i++) {
if (currentMax < a[i]) {
currentMax = a[il];| #times executed
} depends on

} ; contents of al



Counting Operations

What happens when the number of times
executed is variable / depends on the data?

 Worst-case Is usually the important one,
with notable exceptions for algorithms that
beat asymptotically faster algorithms in
practice.

e Quicksort is worst-case O(nA2) but often
beats MergeSort in practice



Counting Strategies:
1. Simple counting

/** A singly linked list node */
public class Node {

int value;

Node next;

public Node(int v) {

value = v;

}

}

/** Insert val into the list in after pred.
* Precondition: pred is not null */
public void addAfter (Node pred, int wval) {

Node newNode = new Node(val); 1
new node.next = pred.next; 1
pred.next = newNode; 1

}



Counting Strategies:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; 1++) {
loopBody (1) ;
}

// is equivalent to:

int 1 = 0; 1

while (i < n) { 1 per iteration
loopBody (1) ; 1 per iteration
i++; 1 per iteration

}

How many iterations?
| takes on values 0..n, of which there are n.



Counting Strategies:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; 1++) {
loopBody (1) ;
}
Total runtime:
// is equivalent to: 1 + 2n 4+ n*[runtime of loopBody]

int i = 0; 1

while (1 < n) { N
loopBody (i) ; n * runtime of loopBody
i++; N

}

How many iterations?
| takes on values 0..n, of which there are n.



Counting Strategies:
2. Aggregate Analysis

Not as easy case:

1. ldentify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of
times each operation happens.



Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
1 = 0;
while 1 < A.length:
J = i
while j > 0 and A[]J] < A[]-1]:
swap(A[J], A[J-11)

J__
i++

Invariant: a sorted ?

AT MOST How many times do we call swap() during iteration i?



Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
1 = 0;
while 1 < A.length:
J = i
while j > 0 and A[]J] < A[]-1]:
swap(A[J], A[J-11)

J__
i++

Invariant: a sorted ?

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration |

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+2+3+...+n-1+n=(n*(n-1))/2=(n"2-n)/2



Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
1 = 0;
while 1 < A.length:
j = 1i;
while j > 0 and A[]J] < A[]-1]:
swap (A[J], A[J-1])
j —
i++
AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as | swaps at iteration |

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+2+3+...+n-1+n=Nn*(n-1))/2=(n2-n)/2

(N2-n)/2 =>n2/2-n/2=>n2-n=>0(n?



What about recursion?

Much like loops:
1. How much work is actually done per call?
2. How many calls are made?
e This is simpler when the work per call is the same.

e Sometimes the work per call depends on n.



Operation Counting in
Recursive Methods: Example

/** Prints the linked list starting at head */
printList (Node head):

if head != null:
print (head)
printList (head.next)



Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort (A, start, end):
if (A.length < 2):
( g ) o(1)
return
mid = (end-start)/2 O(1)

mergeSort (A,start,mid) O(?)
mergeSort (A,mid, end) O(?)

merge (A, start, mid, end) O(??)



Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort (A, start, end):
if (A.length < 2):
( g ) o(1)
return
mid = (end-start)/2 O(1)

mergeSort (A,start,mid) O(?)
mergeSort (A,mid, end) O(?)

merge (A, start, mid, end) O(??)

1. How much work is actually done per call?



Inv

Merge step

. not yet . not yet
copled copied copied copied
K

merged

merge (A, start, mid, end):
B = a deep copy of A
1 = start
j = mid
k =0
while 1 < mid and j < end:
if B[i] < B[]]:

0(1) A[k] = B[1]

i++ Smaller thing
else: goes first
o) 3. T
O(1) x++ Ran out of
things in
one list or
while 1 < mid: the other
Alk] = B[i]
i++, k++ Copy
remaining
while j < end: things from
Alk] = B[j] nonempty
j++, k++ half



Inv

Merge step ==

. not yet . not yet
copled copied copied copied
K

merged

start, mid,

end) :

a deep copy of A

i = start
j = mid
k =0

while 1 < mid and j < end:

Alk] = B[1]
i++
0(1) else:
A[k] = B[]]
j++
kK++

while 1 < mid:
Alk] = B[1]
i++, k++

while j < end:
Alk] = B[7J]
j++, k++

if B[i] < B[j]:

Smaller thing

goes first

Ran out of
things in
one list or
the other

Copy
remaining
things from
nonempty
half



Inv

Merge step ==

1
J
k

start, mid, end):
a deep copy of A

= start

= mid

=0

at most n while 1 < mid and J < end:
=> O(n) iterations

not yet
copied

copied

copied

not yet
copied

merged

O(1)

if B[i] < B[J]:

Alk] = B[i]
i++ Smaller thing
else: goes first
Alk] = B[]]
A Ran out of
K things in
one list or
while 1 < mid: the other
Alk] = B[i]
i++, k++ Copy
remaining
while j < end: things from
Alk] = B[j] nonempty
j++, k++ half



Inv

Merge Step me;gi(A, start, mid, end):

O(n)
. not yet . not yet
copled copied copied copied
K

merged

a deep copy of A

i = start
j = mid
k = 0

while 1 < mid and j < end:
if B[i] < B[J]:
Alk] = B[1]

i++ Smaller thing
else: goes first
Alk] = B[]]
A Ran out of
K things in
one list or
while 1 < mid: the other
Alk] = B[i]
i++, k++ Copy
remaining
while j < end: things from
Alk] = B[j] nonempty
j++, k++ half



Merge Step me;gi(A, start, mid, end):

by a similar argument:

at most n/2 => O(n)

at most n/2 => O(n)

O(n)

a deep copy of A

1 = start
j = mid
k = 0

while 1 < mid and j < end:
if B[i] < B[J]:
Alk] = B[1]

i++ Smaller thing
else: goes first
Alk] = B[]]
k+i++ Ran out of
things in
one list or
while 1 < mid: the other
Alk] = B[i]
i++, k++ Copy
remaining
while j < end: things from
Alk] = B[j] nonempty

j++, k++ half



Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort (A, start, end):
if (A.length < 2):
( g ) o(1)
return
mid = (end-start)/2 O(1)

mergeSort (A,start,mid) O(?)
mergeSort (A,mid, end) O(?)

merge (A, start, mid, end) O(??)

1. How much work is actually done per call?



Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort (A, start, end):
if (A.length < 2):
( g ) o(1)
return
mid = (end-start)/2 O(1)

mergeSort (A,start,mid) O(?)
mergeSort (A,mid, end) O(?)

merge (A, start, mid, end) O(n)

1. How much work is actually done per call?



Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort (A, start, end):
if (A.length < 2):
( g ) o(1)
return
mid = (end-start)/2 O(1)

mergeSort (A,start,mid) O(?)
mergeSort (A,mid, end) O(?)

merge (A, start, mid, end) O(n)

2. How How many calls are made?



How many times can

we divide n by 2 ( n ) O(n)
before we hit 1? / \ O
n/2x = 1 ( n/ 2 ) ( n/2 ( n) %

n = 2x §

X = |092 n n/d4) [(n/4 n/4 o( n) g

O(log n)
levels



Runtime Analysis: Quicksort

/** quicksort A[st..end]*/
quickSort (A, st, end):
if (small): 0o(1)
return

mid = partition(A,st,end) O(n)

quickSort(A,st,mid) 0
gquickSort(A,mid, end)



Runtime Analysis: Quicksort

/** guicksort A[st..end]*/
quickSort (A, st, end):
if (small): 0o(1)
return

mid = partition(A,st,end) O(n)

quickSort(A,st,mid) non
quickSort(A,mid, end) °°
average
If pivot splits array approximately in half each time, (expected)
O(log n) levels of recursion just like mergesort. case

If pivot is the min or max each time, O(n) levels of  worst
recursion, for a total runtime of O(n2)! case



