
CSCI 241
Lecture 7

Runtime Analysis

Announcements
• No quiz today!

Happenings
Monday, 1/28 – CS Faculty Candidate: Research Talk – 4 pm in CF 316
Tuesday, 1/29 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 316
Wednesday, 1/30 – Peer Lecture Series: BASH Workshop – 5 pm in CF 420
Thursday, 1/31 – Group Advising to Declare the Major – 3 pm in CF 420
Thursday 1/31 – CS Faculty Candidate: Research Talk – 4 pm in CF 226
Friday, 2/1 – CS Faculty Candidate: Teaching Talk – 4 pm in CF 226

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fgroup-advising-declare-cs-major-1&data=02%7C01%7Cwehrwes%40wwu.edu%7C00e788ec34744dd252f508d682521761%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636839686576121482&sdata=dXn6ja3N79N2Alc3hS6uN8es0ereYocVA5L30MQEA8Q%3D&reserved=0

Goals:

• Know the runtime complexity of the sorting
algorithms we’ve covered.

• Understand the basics of analyzing the
runtime of recursive algorithms.

• Gain experience counting operations and
determining big-O runtime of simple iterative
and recursive algorithms.

Runtime Analysis: Overview
• Why? We want a measure of performance

where

• it is independent of what computer we run it on. 

• Dependence on problem size is made explicit. 
 

• it is simpler than a raw count of operations and
focuses on performance on large problem sizes.

Solution: count operations instead of clock time.

Solution: express runtime as a function of n
(or whatever variables define problem size)

Solution: ignore constants, analyze asymptotic runtime.

• How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm. 
 
 
 

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Runtime Analysis: Overview

Really? *any* constant?

• My MacBook Pro from 2013: 3.17 gigaFLOPs

• Fastest supercomputer as of June 2018: 200 petaFLOPs

• Supercomputer is 63,091,482 times faster.

A practical argument:

z

n2 algorithm may be faster here!

n2 on a supercomputer

n on my macbook

 Common Complexities

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

Counting Operations

Key intuition:

• These don’t take identical amounts of time, but the times are

within a constant factor of each other.

• Same for running the same operation on a different computer.

What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;

return k;

Counting Operations
What’s not a constant-time operation?

• Anything that does depend on the input
size, e.g.:

• Looping over all values in an array of size n.

• Recursively checking whether a string is a palindrome

• Sorting an array

• Most nontrivial algorithms / data structure operations
we’ll cover in this class.

Counting Operations
What happens when the number of times
executed is variable / depends on the data?

• We have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.
public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
}

times executed
depends on
contents of a!

Counting Operations
What happens when the number of times
executed is variable / depends on the data?

• Worst-case is usually the important one,
with notable exceptions for algorithms that
beat asymptotically faster algorithms in
practice.

• Quicksort is worst-case O(n^2) but often
beats MergeSort in practice

Counting Strategies:
1. Simple counting

/** Insert val into the list in after pred.
 * Precondition: pred is not null */
public void addAfter(Node pred, int val) {
 Node newNode = new Node(val);
 new_node.next = pred.next;
 pred.next = newNode;
}

/** A singly linked list node */
public class Node {
 int value;
 Node next;
 public Node(int v) {
 value = v;
 }
}

1
1
1

Counting Strategies:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

1 per iteration

1
1 per iteration

1 per iteration

How many iterations?

i takes on values 0..n, of which there are n.

Counting Strategies:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

How many iterations?

i takes on values 0..n, of which there are n.

1
n
n * runtime of loopBody
n

Total runtime:

1 + 2n + n*[runtime of loopBody]

Counting Strategies:
2. Aggregate Analysis

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of
times each operation happens.

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n2 - n) / 2

Counting Strategies:
2. Aggregate Analysis

(n2 - n)/2 => n2 / 2 - n / 2 => n2 - n => O(n2)

What about recursion?
Much like loops:

1. How much work is actually done per call?

2. How many calls are made?

• This is simpler when the work per call is the same.

• Sometimes the work per call depends on n.

Operation Counting in
Recursive Methods: Example

/** Prints the linked list starting at head */
printList(Node head):

 if head != null:
 print(head)
 printList(head.next)

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)

1. How much work is actually done per call?

Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

Smaller thing

 goes first

Ran out of
things in

 one list or
the other

Copy
remaining

things from
nonempty

half

 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

 while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1)

O(1)
O(1)O(1)

Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

Smaller thing

 goes first

Ran out of
things in

 one list or
the other

Copy
remaining

things from
nonempty

half

 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

 while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1)

Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

Smaller thing

 goes first

Ran out of
things in

 one list or
the other

Copy
remaining

things from
nonempty

half

 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

 while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(1)

at most n
=> O(n) iterations

Merge step

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Inv

merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

Smaller thing

 goes first

Ran out of
things in

 one list or
the other

Copy
remaining

things from
nonempty

half

 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

 while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(n)

Merge step merge(A, start, mid, end):
 B = a deep copy of A
 i = start
 j = mid
 k = 0

Smaller thing

 goes first

Ran out of
things in

 one list or
the other

Copy
remaining

things from
nonempty

half

 while i < mid and j < end:
 if B[i] < B[j]:
 A[k] = B[i]
 i++
 else:
 A[k] = B[j]
 j++
 k++

 while i < mid:
 A[k] = B[i]
 i++, k++

while j < end:
 A[k] = B[j]
 j++, k++

O(n)

at most n/2 => O(n)

by a similar argument:

at most n/2 => O(n)

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)

O(1)

O(??)

O(?)
O(?)

1. How much work is actually done per call?

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)

O(1)

O(n)

O(?)
O(?)

1. How much work is actually done per call?

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)

O(1)

O(n)

O(?)
O(?)

2. How How many calls are made?

… …

O(log n)

levels

O
(n) each level

How many times can
we divide n by 2
before we hit 1?

n/2x = 1

n = 2x

x = log2 n

Runtime Analysis: Quicksort
/** quicksort A[st..end]*/
quickSort(A, st, end):
 if (small):
 return

 mid = partition(A,st,end)

 quickSort(A,st,mid)
 quickSort(A,mid, end)

O(1)

O(n)

??

Runtime Analysis: Quicksort
/** quicksort A[st..end]*/
quickSort(A, st, end):
 if (small):
 return

 mid = partition(A,st,end)

 quickSort(A,st,mid)
 quickSort(A,mid, end)

O(1)

O(n)

??

If pivot splits array approximately in half each time,
O(log n) levels of recursion just like mergesort.

If pivot is the min or max each time, O(n) levels of
recursion, for a total runtime of O(n2)!

average
(expected)

case

worst
case

