
CSCI 241
Lecture 6

Radix Sort

A bit of runtime, if time allows

Announcements
• Quiz 1 graded and available on Gradescope

• A1 is due Monday night

• If gradle test hangs, you probably have an
infinite loop.

• You can run a single test with e.g.:

• gradle test --tests SortsTest.test00Insertion

Goals:

• Be prepared to implement radix sort.

• Understand how to go from operation count
to a Big-O runtime class.

• Be able to count primitive operations in the
non-recursive sorting algorithms we’ve
covered so far.

How do you sort without
comparing elements?

Comparison sorts operate by comparing pairs of
elements.

Suppose I gave you 10 sticky notes with the digits 0 through 9. 

What algorithm would you use to sort them?  

How many times did you need to look at each sticky note?

What if there are duplicates?

Refresher:
Stacks and Queues

Stack s;
Queue q;

for i in 1..5:
 s.add(i) // push
 q.add(i) // enqueue
for i in 1..5:
 print s.remove() // pop
 print q.remove() // dequeue

Q1: What is printed?

(LIFO) (FIFO)

Stability
Objects can be sorted on keys - different objects
may have the same value.

• e.g., sorting on 10’s place only

A stable sort maintains the order of distinct
elements with the same key.

Exercise - Q2:
• Sort the following array stably on the 1’s digit: 

[7, 19, 61, 11, 14, 54, 1, 8]

Exercise - Q2:
• Sort the following array stably on the 1’s digit: 

[7, 19, 61, 11, 14, 54, 1, 8]

LSD Radix Sort
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 do a stable sort of A on the dth least
 significant digit

// A is now sorted(!)

LSD Radix Sort
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 do a stable sort of A on the dth least
 significant digit

// A is now sorted(!)

Don’t believe me? https://visualgo.net/en/sorting

https://visualgo.net/en/sorting

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 move element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 restore element to list

LSD Intuition: sort on most-significant digit last; if tied,
yield to the next most significant digit, and so on.

Only works because stability preserves orderings from less
significant (previously sorted) digits.

Exercise: Radix sort this
[7, 19, 21, 11, 14, 54, 1, 8]

Hint: [07, 19, 21, 11, 14, 54, 01, 08]

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 move element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 restore element to list

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Exercise - Q3: Radix sort this
[07, 19, 61, 11, 14, 54, 01, 08]

Buckets

on 1’s place:

Sorted on

1’s place:

Buckets

on 10’s place:

Sorted on

10’s place:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Exercise: Radix sort this
[07, 19, 61, 11, 14, 54, 01, 08]

07 1961
11

14
54

01

08

61

11 01 14 54 07 08 19

11

Buckets

on 1’s place:

Sorted on

1’s place:

Buckets

on 10’s place:

61

01
14

54
07
08 19

Sorted on

10’s place: 01 07 08 11 14 19 54 61

LSD Radix Sort
using counting sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 counting sort A on the dth least
 significant digit

// A is now sorted(!)

Counting Sort
Formalizes what you did with the 1-9 sticky notes:

• Handles duplicates

• Stable sort

Intuition:

http://www.cs.miami.edu/home/burt/learning/Csc517.091/
workbook/countingsort.html

Pseudocode in CLRS (and reproduced on the next slide).

http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html
http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html

Counting Sort - from CLRS
Notes:

• k is the base or radix (10 in our examples)

• B is filled with the sorted values from A.

• C maintains counts for each bucket.

• The final loop must go back-to-front to

guarantee stability.

Runtime Analysis: Overview
• Why? We want a measure of performance

that is

• Independent of what computer we run it on. 

• Dependence on problem size is made explicit. 
 

• Simpler than a raw count of operations and focuses on
performance on large problem sizes.

Solution: count operations instead of clock time.

Solution: express runtime as a function of n
(or whatever variables define problem size)

Solution: ignore constants, analyze asymptotic runtime.

Runtime Analysis: Overview
• How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of the
algorithm.

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Comparing findMaxes
• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMin is O(n)

sillyFindMin is O(n2)

Drop constants and lower-order terms
to find the asymptotic runtime class.

From operation count to
Big-O runtime class

• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMax is O(n)

sillyFindMax is O(n2)

How do we get from 8N-5 to O(N)?

1. Drop all constant factors.

8N - 5 becomes N - 1

From operation count to
Big-O runtime class

• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMax is O(n)

sillyFindMax is O(n2)

How do we get from 2 + 5N + 6N2 to O(N2)?

1. Drop all constant factors. 

2. Drop all but the most-significant term
8N - 5 becomes N - 1

N - 1 becomes O(N)

From operation count to
Big-O runtime class

• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMax is O(n)

sillyFindMax is O(n2)

How do we get from 2 + 5N + 6N2 to O(N2)?

1. Drop all constant factors. 

2. Drop all but the most-significant term
2 + 5N + 6N2 becomes N + N2

N + N2 becomes O(N2)

From operation count to
Big-O runtime class

• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMax is O(n)

sillyFindMax is O(n2)

What if the count is 8?

1. Drop all constant factor factors. 

2. Drop all but the most-significant term
8 becomes 1

1 becomes O(1) = “constant time”

From operation count to
Big-O runtime class

• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMax is O(n)

sillyFindMax is O(n2)

What if the count is 800?

1. Drop all constant factor factors. 

2. Drop all but the most-significant term
800 becomes 1

1 becomes O(1) = “constant time”

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

Counting Operations

Key intuition:

• These don’t take identical amounts of time, but the times are

within a constant factor of each other.

• Same for running the same operation on a different computer.

What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;

return k;

