
CSCI 241
Lecture 5

Stability, Comparison Sorts, Radix Sort

Happenings next week
Monday, 1/21 – Martin Luther King Jr. Day, No Class!
Tuesday, 1/22 – CS SMATE Faculty Candidate Gerald Raj: Research Talk – 4 pm in
CF 316
Tuesday, 1/22 – ACM Research Talk: Computer Vision with Dr. Scott Wehrwein – 5 pm
in CF 316
Wednesday, 1/23 – CS SMATE Faculty Candidate Gerald Raj: Teaching Talk – 4 pm in
CF 316
Wednesday, 1/23 – Peer Lecture Series: CS Success Workshop – 5 pm in CF 420
Thursday, 1/24 – CS SMATE Faculty Candidate Cecily Heiner: Research Talk – 4 pm
in CF 316
Friday, 1/25 – CS SMATE Faculty Candidate Cecily Heiner: Teaching Talk – 4 pm in  
CF 115

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Facm-research-talk-computer-vision-dr-scott-wehrwein&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca046257f667b4eba5f0e08d67cd8d665%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636833668116546886&sdata=L%2Fgsw0qgTTViYM%2Fg5%2B%2FwzUNRUXrlAoSCaVSi0MQ6hXs%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-cs-success&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca046257f667b4eba5f0e08d67cd8d665%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636833668116556891&sdata=pt3nc5oWVzD4NQZ4F0DWVfm%2FH3kEP%2FzltKITqPalG8c%3D&reserved=0

Announcements

Goals:

• Know what it means for a sorting algorithm
to be stable

• Understand the distinction between
comparison and non-comparison sorts.

• Be prepared to implement radix sort.

Stability
Objects can be sorted on keys - different objects
may have the same value.

• e.g., sorting a collection of Students by first name only.

A stable sort maintains the order of distinct
elements with the same key.

Stability
A stable sort maintains the order of elements with
the same value.

[6* 2* 6+ 2+ 3 4]

[2* 2+ 3 4 6* 6+]Stably sorted:

Unstably sorted: [2+ 2* 3 4 6* 6+]

Stability
A stable sort maintains the order of elements with
the same value.

[6* 2* 6+ 2+ 3 4]
insertionSort(A):
 i = 0;
 while i < A.length:
 // push A[i] to
 // its sorted position
 // in A[0..i]
 // increment i

selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

In groups: Sort this list using insertion and selection sort. Is
either algorithm stable?

How do you sort without
comparing elements?

Comparison sorts operate by comparing pairs of
elements.

Suppose I gave you 10 sticky notes with the digits 0 through 9. 

What algorithm would you use to sort them?  

How many times did you need to look at each sticky note?

What if there are duplicates?

Refresher:
Stacks and Queues

Stack s;
Queue q;

for i in 1..5:
 s.add(i) // push
 q.add(i) // enqueue
for i in 1..5:
 print s.remove() // pop
 print q.remove() // dequeue

ABCD: What is printed?

A. 1 1 2 2 3 3 4 4

B. 1 4 2 3 3 2 4 1

C. 4 1 3 2 2 3 1 4

D. 4 4 3 3 2 2 1 1

(LIFO) (FIFO)

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sorting on 10’s place only

[6* 2* 6+ 2+ 3 4]

[61 21 63 23 35 48]

