
CSCI 241
Lecture 3:

Recursion, Mergesort

Announcements
• First programming assignment (A1) out

tonight or tomorrow

• We’ll cover the rest of the sorting algorithms you need
for A1 it this week.

• Quiz 0 is graded. You’ll get an email from
Gradescope to set up your account, log in,
and see your graded work.

Happenings
• Tuesday, 1/15: CS/SMATE Faculty Candidate, Caroline

Hardin, Research Talk: Connection Reset by Peer: Who
Learns at Hackathons?, 4-5PM, CF 316

• Wednesday, 1/6: CS/SMATE Faculty Candidate, Caroline
Hardin, Teaching Talk: When the ‘Ifs’ are Stiff and ‘Nots’
are Knots: Debugging Techniques through E-textiles, 4-5PM,
CF 316

• Wednesday 1/16: WWU’s MLK Jr event: “We are not the
makers of history. We are made by history”, 7PM, PAC

• Winter Career Fair featuring STEM, 2/7: get your resume
ready!

https://na01.safelinks.protection.outlook.com/?url=https://westerntoday.wwu.edu/news/wwu-to-celebrate-legacy-of-martin-luther-king-jr-on-jan-16&data=02%7C01%7Cwehrwes@wwu.edu%7C532d9d0e72cf4891bc6f08d6780e3fd3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636828400524342342&sdata=PRK75ApCnUo53CFQZTw0BqqsrBuNRwBXmTy5UTpCcrU=&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https://westerntoday.wwu.edu/news/wwu-to-celebrate-legacy-of-martin-luther-king-jr-on-jan-16&data=02%7C01%7Cwehrwes@wwu.edu%7C532d9d0e72cf4891bc6f08d6780e3fd3%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636828400524342342&sdata=PRK75ApCnUo53CFQZTw0BqqsrBuNRwBXmTy5UTpCcrU=&reserved=0

Roadmap
• Last week:

• selection and insertion sorts

• Some intuition on runtime analysis

• This week:

• Recursive sorting algorithms (merge, quick)

• Radix sort

• Next week: data structures

Goals for today:
• Understand how recursive methods are

executed.

• Be able to understand and develop
recursive methods without getting confused
by the details of how they are executed.

• Gain intuition for how merge sort works

Why are we talking about
recursion, I thought we were

learning about sorting?

mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

How do we execute
recursive methods?

x = max(1,3)
=> 3

How do we execute
non-recursive methods?

x =
3

 max(1,3)

How do we execute
non-recursive methods?

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 * fact(0)

=> 1

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 *

1
fact(0)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 * 1

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 *
1

fact(1)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 *

2
 fact(2)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 6

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:
n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

Problem 1: If I call fib(3),

A. How many times is fib called? (show your work)

B. What value is returned?

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:
n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

1A - ABCD:
A. 3

B. 4

C. 5

D. 6

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:

Problem 2: If I call fib(4),

A. How many times is fib called? (show your work)

B. What value is returned?

n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

1A - ABCD:
A. 3

B. 4

C. 5

D. 6

1. Make sure it has a precise specification.

2. Make sure it works in the base case.

3. Ensure that each recursive call makes
progress towards the base case.

4. Replace each recursive call with the
spec and verify overall behavior is correct.

How do we understand recursive methods?  

def count_e(s):
“”” returns # of ‘e’ in string s
“””
if len(s) == 0:

return 0
first = 0
if s[0] == ‘e’:
 first = 1

return first + count_e(s[1..end])

How do we understand recursive methods?  

1. spec

2. base case

3. progress4. recursive call —> spec

Got it?
This code has at least one bug:

dup(String s):
if s.length == 0:

return s

return s[0] + s[0] + dup(s)

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s)

1. spec!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s)

3. progress!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s[1..s.length])

3. progress!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

1. Write a precise specification.

2. Write a base case without using recursion.

3. Define all other cases in terms of
subproblems of the same kind.

4. Implement these definitions using the
recursive call to compute solutions to the
subproblems.

How do we develop recursive methods?  

=

Examples:

• civic

• radar

• deed

• racecar

Palindromes

racecar
=

=

palindrome

=

Recursive definition: A string s is a palindrome if

• s.length < 2, OR

• s[0] == s[end-1] AND s[1..end-2] is a palindrome

racecar
=

palindrome

Recursive definition: A string so is a palindrome if

• s.length < 2, OR

• s[0] == s[end-1] AND s[1..end-2] is a palindrome

Problem 3: Write a recursive palindrome checker:

/** return true iff s[start..end]
 * is a palindrome */
public boolean isPal(s, start, end) {
 // your code here
}

Incremental Algorithms

Natural programming
mechanism: loops

solve a problem a little bit at a time.

A
i

sorted ?

insertion sort

https://zippy.gfycat.com/PossibleDiligentAfricanjacana.webm

Divide-and-Conquer
Algorithms

Natural programming
mechanism: recursion

solve a problem by breaking it into smaller problems.

(easier!)

https://upload.wikimedia.org/wikipedia/commons/f/fe/
Quicksort.gif

https://upload.wikimedia.org/wikipedia/commons/f/fe/Quicksort.gif
https://upload.wikimedia.org/wikipedia/commons/f/fe/Quicksort.gif

Divide-and-Conquer
Algorithms

Natural programming
mechanism: recursion

solve a problem by breaking it into smaller problems.

Three generic steps:
1. Divide (into sub-problems)
2. Conquer (the sub-problems)
3. Combine (into a solution to the original problem)

Divide-and-Conquer
Algorithms

Natural programming
mechanism: recursion

solve a problem by breaking it into smaller problems.

Three generic steps:
1. Divide (into sub-problems)
2. Conquer (the sub-problems)
3. Combine (into a solution to the original problem)

Why are we talking about divide-
and-conquer, I thought we were

learning how to sort things?

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

An example of
Divide-and-Conquer

1. Divide

2. Conquer

3. Combine

Combine

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)

 mergeSort(A,mid, end)

 merge(A, start, mid, end)

Conquer (right)

Conquer (left)

Divide

mid

Combine

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 mergeSort(A,start,mid)

 mergeSort(A,mid, end)

 merge(A, start, mid, end)

Conquer (right)

Conquer (left)

Divide

1. Spec

2. Base case

3. Progress

Combine

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2

 sort A[start..mid]

 sort A[mid..end]

 merge(A, start, mid, end)

Conquer (right)

Conquer (left)

Divide

1. Spec

2. Base case

3. Progress

4. Replace recursive calls with spec

Merge Step
• Merge two halves, each of which is sorted.

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_18f/
img/merge.gif

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_18f/img/merge.gif
https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_18f/img/merge.gif

