CSCI 241: Data
Structures

Lecture 2
Insertion and Selection Sort:
Runtime analysis

Announcements

Quiz time!

e On review topics.
e Will be graded, but credit is 1/0 for participation.

e 10 minutes

Last Time

e [wo sorting algorithms:
e |nsertion sort

e Push the next unsorted element into its sorted
position

o Selection sort

e Find the next smallest element and put it into its final
position.

Insertion sort: Pseudocode

// Sorts A using insertion sort Sort the following

insertionSort(A): array using insertion
i = 0; sort:
while i < A.length: [14826]
J = 17
while j > 0 and A[]J] < A[J-1]: How many times did
s.wap(A[j], A[J-11) you swap two
i+i" elements?
A. 3
B. 4
C. 6
D. 8

Invariant: & sorted ?

Selection Sort

selectionSort(A):

i - 0. Sort the following array

while i < A.length: using selection sort:

// find min of A[i..A.length] [14826]

// swap it with A[i]

// increment i How many times did
you swap two distinct
elements?

A 2
B. 3
C. 4
D. 5

Invariant: A |sorted, <= A[i..n] ?

Practice Problems

1. Write code for Selection Sort

2. Consider the array:

(8 46 107 1 2]

Write the state of the array at the conclusion of the loop
iteration in which i == 4 (don’t forget arrays are 0-indexed!).

InsertionSort:

SelectionSort:

Which sort should we use?

e \Which one takes less time?

e \Which one takes less memory?

e Other considerations?

How do we measure these
things?

e \Which one takes less time?

e \Which one takes less memory?

e Other considerations?

How should we measure
runtime?

low many ways can you think of to describe the runtime of
an algorithm?

public int findMax(int[] a) {
int currentMax = a[0];
for (int 1 = 1; i1 < a.length; i++) {
i1f (currentMax < a[i]) {
currentMax = a[1i];

}

return currentMax;

How should we measure
runtime?

How about metrics that are invariant to
* Length of the array a?
e How fast your computer is?

Approach: count the number of “operations” the computer
needs to execute.

e Count it in terms of the input size

e “operations” may be faster or slower depending on
the hardware

“Primitive” Operations

Things the computer can do in a “fixed” amount of time.
“fixed” - doesn’t depend on the input size (n)

A non-exhaustive list:

 (Get or set the value of a variable or array location

 Evaluate a simple expression

e Return from a method

Strategies for counting
primitive operations
Easiest case:
1. ldentify all primitive operations
2. Identify how many time each one happens

3. Add them all up.

alg(A, n):
sum = 0 1

for 1 =1..n:
n times

sum += A[1i] 1

Strategies for counting
primitive operations
Easiest case:
1. ldentify all primitive operations
2. Identify the number of iterations each loop performs

3. Multiply primitives by how many times they’re looped over

4. A total: 1 + n
alg(A, n):
sum = 0 1

for 1 = 1..n:

sum += A[l] 1 n times

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0];

for (int i = 1; i < a.length; i++) {
1f (currentMax < a[i]) {

currentMax = a[1i];

}

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set

set eval, get eval, set
for (int 1 = 1; 1 < a.length; i++) {

eval, get
1f (currentMax < a[i]) {

set, get
currentMax = a[1i];

} return
return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set

set eval, get eval, set
for (int 1 = 1; 1 < a.length; i++) {

eval, get
1f (currentMax < a[i]) {

set, get
currentMax = al[1i];

} Let N = a.length. How many times does
} return each primitive operation happen?

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set 1

s?et eva(ll\I c;ll) eval, set 2(N-1)

for (int 1 = 1; 1 < a.length; 1++)

eval, get 2(N-1)

1f (currentMax < a[i]) {

set, get
currentMax = al[1i];
} 1 Let N = a.length. How many times does
} return each primitive operation happen?

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set 1

s?et eva(ll\I c;ll) eval, set 2(N-1)

for (int 1 = 1; 1 < a.length; 1++)

eval, get 2(N-1)
1f (currentMax < a[i]) {
set, get ???7?
currentMax = a[i];

} 1 Let N = a.length. How many times does
} return each primitive operation happen?

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set 1

s?et eva(ll\I c;ll) eval, set 2(N-1)

for (int 1 = 1; 1 < a.length; 1++)

eval, get 2(N-1)
1f (currentMax < a[i]) {
set, get ???7?
currentMax = a[i];

b Let N = a. length. AT MOST how many times
} return does each primitive operation happen?

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set 1

s?et eva(ll\I c;ll) eval, set 2(N-1)

for (int 1 = 1; 1 < a.length; 1++)

eval, get 2(N-1)
1f (currentMax < a[i]) {
set, get 2(N-1)

currentMax = al[1i];

b Let N = a. length. AT MOST how many times
} return does each primitive operation happen?

return currentMax;

Analyzing Runtime

public int findMax(int[] a) {
int currentMax = a[0]; get, set 1

s?et eval(ll\I c;ll) eval, set 2(N-1)

for (int 1 = 1; 1 < a.length; 1++)

eval, get 2(N-1)

1f (currentMax < a[i]) {

set, get 2(N-1)

currentMax = a[1i];

}
1
} return Total: 8N-5

return currentMax;

sillyFindMax

public int sillyFindMax(int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
// check if anything is bigger than ali]
boolean isMax = true;
for (int j = 0; jJ < a.length; j++) {
if (a[j] > al[i])

isMax = false; //found something bigger

}
}
1f (isMax) {
return al[i];
}
}
}

sillyFindMax

public int sillyFindMax(int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) { 1+ N+N
// check if anything is bigger than ali]

boolean isMax = true; N
for (int j = 0; j < a.length; j++) {N (1+N+N)
if (a[j] > a[1i]) { N (3N)

isMax = false; //found something bigger N*N

}

}

if (isMax) { N
return al[i];

\ 1

}} 2 + 5N + 6N?2

Comparing findMaxes

e findMax: 8N -5

e sillyFindMax: 2 + 5N + 6N?

. sillyFindMin is O(n2)

findMin is O(n)

l - —_—

4 DO o 1 0)

Strategies for counting
primitive operations
Not as easy case:

1. ldentify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of
times each operation happens.

Insertion Sort: Runtime

// Sorts A using insertion sort
insertionSort (A):
1 = 0;
while 1 < A.length:
J = i
while j > 0 and A[]J] < A[]-1]:
swap(A[J], A[J-11)

j__
i++

Invariant: a sorted ?

AT MOST How many times do we call swap() during iteration i?

Insertion Sort: Runtime

// Sorts A using insertion sort
insertionSort (A):
1 = 0;
while 1 < A.length:
J = i
while j > 0 and A[]J] < A[]-1]:
swap(A[J], A[J-11)

J__
i++

Invariant: a sorted ?

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration |

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+2+3+...+n-1+n=(n*(n-1))/2=(n"2-n)/2

