
CSCI 241: Data
Structures

Lecture 2
Insertion and Selection Sort:

Runtime analysis

Announcements

Quiz time!

• On review topics.

• Will be graded, but credit is 1/0 for participation.

• 10 minutes

Last Time
• Two sorting algorithms:

• Insertion sort

• Push the next unsorted element into its sorted
position

• Selection sort

• Find the next smallest element and put it into its final
position.

Insertion sort: Pseudocode
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

Sort the following
array using insertion
sort:

 [1 4 8 2 6]

How many times did
you swap two
elements?

A. 3
B. 4
C. 6
D. 8

Selection Sort
selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

Sort the following array
using selection sort:

 [1 4 8 2 6]

A sorted, <= A[i..n]Invariant: ?
i

How many times did
you swap two distinct
elements?

A. 2
B. 3
C. 4
D. 5

Practice Problems
1. Write code for Selection Sort

2. Consider the array:

[8 4 6 10 7 1 2]

Write the state of the array at the conclusion of the loop
iteration in which i == 4 (don’t forget arrays are 0-indexed!).

InsertionSort:

SelectionSort:

Which sort should we use?

•Which one takes less time? 
 

•Which one takes less memory? 
 

•Other considerations?

How do we measure these
things?

•Which one takes less time? 
 

•Which one takes less memory? 
 

•Other considerations?

How should we measure
runtime?

How many ways can you think of to describe the runtime of
an algorithm?

public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
 return currentMax;
}

How about metrics that are invariant to

• Length of the array a?

• How fast your computer is?

Approach: count the number of “operations” the computer
needs to execute.

• Count it in terms of the input size

• “operations” may be faster or slower depending on

the hardware

How should we measure
runtime?

“Primitive” Operations
Things the computer can do in a “fixed” amount of time.

A non-exhaustive list:

• Get or set the value of a variable or array location

• Evaluate a simple expression

• Return from a method

“fixed” - doesn’t depend on the input size (n)

Strategies for counting
primitive operations

Easiest case:

1. Identify all primitive operations

2. Identify how many time each one happens

3. Add them all up.

alg(A, n):
 sum = 0
 for i = 1..n:
 sum += A[i] 1

1

n times

Strategies for counting
primitive operations

Easiest case:

1. Identify all primitive operations

2. Identify the number of iterations each loop performs

3. Multiply primitives by how many times they’re looped over

4. A
alg(A, n):
 sum = 0
 for i = 1..n:
 sum += A[i] 1

1

n times

total: 1 + n

Analyzing Runtime
public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

get, set

set eval, seteval, get

eval, get

set, get

return

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

Let N = a.length. How many times does
each primitive operation happen?

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

return

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

1
1 2(N-1) 2(N-1)

2(N-1)

return
1 Let N = a.length. How many times does

each primitive operation happen?

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

1
1 2(N-1) 2(N-1)

2(N-1)

return
1

????

Let N = a.length. How many times does
each primitive operation happen?

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

1
1 2(N-1) 2(N-1)

2(N-1)

return
1

????

Let N = a.length. AT MOST how many times
does each primitive operation happen?

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

1
1 2(N-1) 2(N-1)

2(N-1)

return
1

2(N-1)

Let N = a.length. AT MOST how many times
does each primitive operation happen?

public int findMax(int[] a) {
 int currentMax = a[0];

 for (int i = 1; i < a.length; i++) {

 if (currentMax < a[i]) {

 currentMax = a[i];
 }
 }
 return currentMax;
}

Analyzing Runtime
get, set

set eval, seteval, get

eval, get

set, get

1
1 2(N-1) 2(N-1)

2(N-1)

return
1

2(N-1)

Total: 8N-5

sillyFindMax
public int sillyFindMax(int[] a) {
 for (int i = 0; i < a.length; i++) {

 // check if anything is bigger than a[i]

 boolean isMax = true;
 for (int j = 0; j < a.length; j++) {
 if (a[j] > a[i]) {

 isMax = false; // found something bigger

 }
 }
 if (isMax) {
 return a[i];
 }
 }
}

public int sillyFindMax(int[] a) {
 for (int i = 0; i < a.length; i++) {

 // check if anything is bigger than a[i]

 boolean isMax = true;
 for (int j = 0; j < a.length; j++) {
 if (a[j] > a[i]) {

 isMax = false; // found something bigger

 }
 }
 if (isMax) {
 return a[i];
 }
 }
}

sillyFindMax
1 + N + N

N
N (1+N+N)

N (3N)
N*N

N
1

2 + 5N + 6N2

Comparing findMaxes
• findMax: 8N - 5

• sillyFindMax: 2 + 5N + 6N2

findMin is O(n)

sillyFindMin is O(n2)

Strategies for counting
primitive operations

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of
times each operation happens.

Insertion Sort: Runtime
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

Insertion Sort: Runtime
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

