
CSCI 241: Data
Structures

Lecture 1
Introduction

Course Overview

Intro to Sorting

Today

1. About Me

2. Course Overview and a few notes on the syllabus

3. Insertion Sort and Selection Sort

About Me

Scott Wehrwein

Computer Vision: Familiar Examples

Image Search

In-Camera Face Detection

Panorama Stitching

Autonomous Driving

Data Structures: Why?

Graph
Graph

algorithm
Tree

Hash table

Syllabus Overview

Course website:

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_19w

Also linked from the Syllabus section on Canvas.

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_19w

Goals
• Understand the range index convention a..b

• Know the definition of specification,
precondition, postcondition, and invariant.

• Be able to execute insertion sort and
selection sort on paper.

• Be able to implement insertion sort and
selection sort.

Sorting Algorithms
Why?

• Arrays are the simplest and most
ubiquitous data structure available to us.

• Sorting algorithms are a fundamental piece
of knowledge for computer scientists

• An entry point into the practice of
developing, and analyzing algorithms.

Preliminaries:
Tools for Talking about

Algorithms

Range Indices
 a..b denotes the range of consecutive integers from

(and including) a up to (but excluding) b.

Examples:

• 0..5 is the range 0, 1, 2, 3, 4

• A[4..6] denotes the 4th and 5th elements of A

• 7..8 is a range containing only 7

• 6..6 is a valid range but contains no elements

Range Indices
 a..b denotes the range of consecutive integers from

(and including) a up to (but excluding) b.

• How many elements are in the range a..b?

A. b-a-1

B. a-b-1

C. b-a+1

D. B-a

Range Indices
 a..b denotes the range of consecutive integers from

(and including) a up to (but excluding) b.

• Recall that A.length gives A’s length. What
range denotes all elements of A?

A. A[0..A.length]

B. A[0..A.length-1]

C. A[0..A.length+1]

D. A[1..A.length-1]

Specification
 /** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */
 public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the largest value in A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 Max = A[i];
 }
 }
 return max;
 }

A method specification is a comment above the method that
details the precise behavior of the method.

Precondition, Postcondition

The precondition is true before method execution.

The postcondition is true after method execution.

 /** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */
 public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the largest value in A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
 }

(Loop) Invariant
 /** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */
 public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
 }

A loop invariant is true before, during, and after the loop.

A[0..1]
A[0..i]

A[0..a.length]

Max is the largest value in:

(at the end of each iteration)

Loop Invariant

The loop invariant is true before, during, and after the loop.

A[0..1]
A[0..i]

A[0..a.length]

Precondition: A

APostcondition:

?
i=1

A
i

Invariant:
i=a.length

largest value in this  
section is max

?largest value  
is max

largest value  
is max

Onward to sorting!

Insertion Sort

https://visualgo.net/bn/sorting

Insert A[i] into the sorted sublist A[0..i-1].

Selection Sort
Find the smallest element in A[i..n] and place it at A[i].

https://visualgo.net/bn/sorting

Insertion Sort

https://visualgo.net/bn/sorting

Insert A[i] into the sorted sublist A[0..i-1].

Selection Sort
Find the smallest element in A[i..n] and place it at A[i].

A sortedInvariant: ?

A sorted, <= A[i..n]Invariant: ?

i

i

https://visualgo.net/bn/sorting

insertionSort(A):
 i = 0;
 while i < A.length:
 // push A[i] to its sorted position by repeatedly
 // swapping with the element to its left
 // increment i

selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

A sortedInvariant: ?
i

A sorted, <= A[i..n]Invariant: ?
i

Insertion sort: Pseudocode
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] > A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

