CSCI 241: Data
Structures

Lecture 1
Introduction
Course Overview
Intro to Sorting

Today

1. About Me
2. Course Overview and a few notes on the syllabus

3. Insertion Sort and Selection Sort

About Me

Scott Wehrwein

Computer Vision: Familiar Examples

In-Camera Face Detection Autonomous Driving

Panorama Stitching Image Search

» “_ X ﬁ W RERRE :
| '

S

Ly

2

ol B

.

\

\

D
i
’

-

A=

.
A%
=

BVDS
DAVIS
| FBMS
| SegTrackv2
timelapse

Q

vV vV v . v Vv

Annot > Dataterm > easy_output.txt
Annotatii_cre euation >
| ImageSet DME.md 7 grid.py
| JPEGImages » || Segmentations » || homography I
README.md model.model
Results 4 my_results

ash table

train.txt.model
train.txt.range
train.txt.scale
train.txt.scale.out
__ train.txt.scale.png

1Ss1e

JUT

Data Structures: Why?

O.Communications Facility
g s
@)
e
e
: Q Sehome Higibch
@
o
[]
: Ll
: 5/
o -
°
® HAPPY E
[
[
[
® £ 1h 13 min
: 1h | 3.5miles
: 2.8 miles
000009
%
(o) ..l....
Q »
O,
%seg ©
s %
-
e
e
e
[)
0]
%
[)
0. Wilkin St Lake
0. Padden-Park
O,

Arroyo Park

0 g
@@ Lake Padden Dam

Google

Syllabus Overview

Course website:

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241 19w

Also linked from the Syllabus section on Canvas.

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_19w

Goals

 Understand the range index convention a..b

e Know the definition of specification,
precondition, postcondition, and invariant.

e Be able to execute insertion sort and
selection sort on paper.

 Be able to implement insertion sort and
selection sort.

Sorting Algorithms

Why?

* Arrays are the simplest and most
ubiquitous data structure available to us.

e Sorting algorithms are a fundamental piece
of knowledge for computer scientists

 An entry point into the practice of
developing, and analyzing algorithms.

Preliminaries:
Tools for Talking about
Algorithms

Range Indices

a..b denotes the range of consecutive integers from
(and including) a up to (but excluding) b.

Examples:

e 0.5istherange 0, 1, 2, 3, 4

* A[4..6] denotes the 4th and 5th elements of A
e /..8 Is a range containing only 7

* 6..6 is a valid range but contains no elements

Range Indices

a..b denotes the range of consecutive integers from
(and including) a up to (but excluding) b.

e How many elements are in the range a. .b?
A. b-a-1
B. a-b-1
C. b-a+l

D. B-a

Range Indices

a..b denotes the range of consecutive integers from
(and including) a up to (but excluding) b.

e Recall that A.1ength gives A's length. What
range denotes all elements of A?

A. A[0..A.length]
B. A[0..A.length-1]
C. A[0..A.length+1]

D. A[l..A.length-1]

Specification

/** return the max value in A
* precondition: A 1s nonempty
* postcondition: max value of A is returned */
public int findMax(int[] A) {
int max = A[0];
// invariant: max is the largest value in A[0..i]
for (int i = 1; 1 < A.length; i++) {
if (A[1] > max) {
Max = A[1];
}
}

return max;

}
A method specification is a comment above the method that
details the precise behavior of the method.

Precondition, Postcondition

/** return the max value in A
* precondition: A is nonempty
* postcondition: max value of A is returned */
public int findMax(int[] A) {
int max = A[0];
// invariant: max is the largest value in A[0..i]
for (int i = 1; 1 < A.length; i++) {
if (A[1] > max) {
max = A[1];
}
}

return max;

}

The precondition is true before method execution.
The postcondition is true after method execution.

(Loop) Invariant

/** return the max value in A

* precondition: A 1s nonempty

* postcondition: max value of A is returned */
public int findMax(int[] A) {

int max = A[0];

// Anvariant: max is the max of A[0..1i]

for (int i = 1; 1 < A.length; i++) {

if (A[1] > max) {
max = A[1];

}
) Max 1s the largest value 1in:
return max; A[0..1]
} A[0..1]
T A[O..i.length]

A loop Invariant is true before, during, and after the loop.
(at the end of each iteration)

Loop Invariant

largest value

in this

section is max

Precondition: A

Invariant: A

Postcondition: 2

\ l=1

D

largest value N

is max

largest value
1s max

A[0..1]

1=a.length

A[O0..1]
T A[O..%.length]
The loop Iinvariant is true before, during, and after the loop.

Onward to sorting!

Insertion Sort

Insert AJi] into the sorted sublist A[O..i-1].

Selection Sort

Find the smallest element in Ali..n] and place it at A[i].

https://visualgo.net/bn/sorting

https://visualgo.net/bn/sorting

Insertion Sort

Insert AJi] into the sorted sublist A[O..i-1].

1

Invariant: 2 sorted ?

Selection Sort

Find the smallest element in Ali..n] and place it at A[i].

1

Invariant: 2 |sorted, <= A[i..n] ?

https://visualgo.net/bn/sorting

https://visualgo.net/bn/sorting

insertionSort(A):
1 = 0;
while 1 < A.length:
// push A[i] to its sorted position by repeatedly
// swapping with the element to its left
// increment i .

Invariant: A sorted ?

selectionSort (A):
1 = 0;
while 1 < A.length:
// find min of A[i..A.length]
// swap it with A[i]
// increment i

Invariant: A |sorted, <= A[i..n] ?

Insertion sort: Pseudocode

// Sorts A using insertion sort
insertionSort(A):
1 = 0;
while 1 < A.length:
J = 1
while j > 0 and A[]J] > A[]-1]:
swap(A[J], A[J-11)

j__
i++

Invariant: & sorted ?

