CSCI241, Winter 2019, Lab 2
Due Tuesday, January 22 at 9:59pm

Unlike the homework assignments for CSCI241, you are encouraged to work with your peers
in completing the labs. However, each student must write and submit their own code—no files
may be exchanged. If any of this is unclear, please ask for further clarification.

1 Overview

Testing is an important part of software development. It is done to assess whether a software
product will properly serve its intended purpose. Many different parties are involved in testing
over the lifetime of a software product, and there exist many different methods of software
testing. This lab focuses on unit testing, which aims to assess the correctness/usefulness of in-
dividual components of a larger program. In other words, each test checks that a small “unit”
of the system works as intended. The unit to be tested may be a class, a method, or even a
particular usage of a method. The correctness of each individual unit in a larger program can
be thought of as a necessary, but not sufficient, condition for the program to work. Testing
individual units can also make it much easier to locate and fix bugs.

Writing tests is hard work. Often, writing a good unit test is harder than writing the unit
to be tested. However, writing tests is worth it: finding and fixing subtle bugs can take
boundless amounts of programmer time, and uncaught bugs can be exceedingly expensive. For
this reason, many major software companies require tests to be written for any new functionality
introduced into production code.

In this course, we will be using JUnit, a widely-used testing framework for Java. JUnit provides
functionality to write and run tests that make assertions that verify that code behaves the way
we expect it to. For A1, you have been given a test suite (a collection of unit tests) to verify that
your sorting methods work correctly. The test suite relies on several helper methods that check
properties of arrays; your task in this lab is to implement these helper methods, implement
insertion sort, and verify that your insertion sort method passes all its tests.

2 Git and submission for Lab 2

For this lab, you will be working in your A1l repository. If you have not yet accepted the Github
Classroom invitation, find the link on canvas and clone your repository as per the instructions
for Al. You will submit your code for this lab by committing and pushing the changes to your
SortsTest.java file to your remote Al respository on GitHub.

It is recommended that you git add and git commit regularly while developing your code,
at least once per method you implement. When you have something working, git push your



changes to GitHub.

Whether or not you finish implementing SortsTest during lab, make sure to commit
and push whatever code you have at the end of the lab period to be sure you receive
credit for attending lab.

3 The SortsTest Class

Gradle knows how to compile and run JUnit tests. The standard location for test code in a
gradle project such as ours is src/test/java/; all Al classes live in the sort package, so you'll
find SortsTest. java at src/test/java/sorts/SortsTest.java.

SortsTest. java contains a number of methods preceeded by the @Test directive, which tells
JUnit that they are test cases that should be run as part of the test suite. Each test case makes
one or more assertions using methods like assertTrue or assertEquals, to check that code
behaves as expected. The test cases for A1 have been provided for you, but they call
helper methods that you must implement for them to work.

To check that a sorting method has done its job correctly, the resulting array must have two
properties:

e The resulting array is sorted.
e The resulting array has exactly the same elements as the original.

Below all the test cases, you will find stubs (i.e., method headers with missing implementation)
for the methods that you need to implement to make the tests work correctly. This includes
two methods that check the above two properties for sorted arrays, and one method that is
used in tests for the partition helper method for quick sort.

4 Running Tests with Gradle

You can run JUnit tests with gradle with the command gradle test. If your main source code
or test code is not compiled, gradle will automatically run the build task to make sure the code
is compiled before the tests are run. If all the tests pass, you'll get a list of Tasks that were
run followed by a message that says Build Successful. If any tests fail (which, unless you’ve
implemented all of the sorts correctly, some should at this point), you’ll get a message saying
that the build failed because some of the tests did not pass. The output from Gradle tells you
which tests failed, and points you to the location of a more detailed report, found in an html
file located at build/reports/tests/test/index.html. You can go into this directory and
double-click the file open it in a browser; this will show you a stack trace for each test failure to
help you track down where your code went wrong. Before writing any code, try this out—you
should find that none of the tests pass, and the stack traces show that they fail because the
helper methods below all return false.

5 Your Tasks

For each of the methods you need to implement, see the specification in the code for details of
how it should behave.

1. Implement isSorted, which checks whether an array is sorted.



2. Implement public static boolean sameElements, which checks whether two arrays
contain the same elements. Hint: use a java.util.HashMap<Integer,Integer> to keep
track of how many times each value appears. The easiest way to find documentation on
the HashMap class (or any other java class) is by googling “java 8 HashMap”

Potentially Useful Methods:

e put(K key, V value)

e get(Object key)

e containsKey(Object key)
e isEmpty()

e remove(Object key)

3. public static boolean isPartitioned checks whether the array has been correctly
partitioned around a given “pivot” element.

4. At this point, if you have not written the insertionSort method in Sorts.java, you should
do so now. The algorithm was given in Lecture 1, slides for which are available on the
course webpage.

5. Finally, run gradle test and make sure the tests for insertionSort pass. Debug your code
until your code passes all the tests with “Insertion” in the method name. Keep in mind
that bugs may reside in insertionSort or in the test code itself. Use the information in
the stack trace to help you out.

6. Make sure you have committed and pushed both Sorts.java (with insertionSort completed—
the other sorts need not be done until you submit Al) and TestSorts.java to your Al
repository on github.

Rubric

This lab is worth 10 points. The three helper methods in SortsTest.java are worth 3 points
each, and at least an attempt at implementing insertionSort is worth 1 point. You are not
strictly required to have all the insertion sort tests passing to get credit for this lab, but it’s
recommended. Insertion sort’s correctness will be graded as a part of Al.
Deductions may be made for:

e Submission issues

e Compile or run-time errors when running tests

e Poor coding style (e.g. commenting, indentation, variable naming, etc.)

Acknowledgments

Thanks are owed to Tanzima Islam, Qiang Hao, Brian Hutchinson, Filip Jagodzinski, and
others for producing and refining past labs from which this lab was adapted.



