
CSCI241, Winter 2019, Assignment 2

Due February 11th 15th at 9:59pm

Your submission for this and all future homework assignments, must be your own work. You
may discuss topics and concepts at a high level and brainstorm using a white board, but you
cannot share, disseminate, co-author, or even view, another student’s code. Please refer to the
academic honesty guidelines on the syllabus for more details. If any of this is unclear, please
ask for further clarification.
If you rely on any external resources (e.g., the internet, other textbooks, etc.), you MUST cite
those resources in the acknowledgements section of your writeup. Under no circumstances may
you cut-and-paste entire blocks of code from the internet, other current or past students, or
anywhere else—if you do, you will receive an F in the course and be reported to the Dean of
Students.

1 Overview

You are given a partial implementation of a Binary Search tree in AVL.java. Your task will be
to complete this implementation and turn the BST into an AVL tree by maintaining the AVL
balance property on insertion. You will use this AVL tree to efficiently count the number of
unique words in a text document.

2 Getting Started

The Github Classroom invitation link for this assignment is in Assignment 2 on Canvas. Begin
by accepting the invitation and cloning a local working copy of your repository as you did in
Assignment 1. Make sure to clone it somewhere outside the local working copies for other
assignments and labs (e.g., clone to ~/csci241/a1) to avoid nesting local repositories.

3 Program Behavior, User’s perspective

Some helpful skeleton code for the word-counting application is provided in Vocab.java.
Each command-line argument to the Vocab program is a text file. The program reads words

from a text file, removing whitespace and punctuation, and normalizing to all lower case - this
means “Band” and “band,” will both come out as “band” and you won’t count the same word
as two different ones.

For each text file, your program should then print two numbers on a single line:

1. The number of unique words used in the document.

2. The total number of words used in the document.

1



If the program receives no command-line arguments, it should read text from standard in
(System.in) until an end-of-file character is reached (in linux you can send the EOF character
to a process by pressing Ctrl+d; in Windows, I’m told the shortcut is Ctrl+z). If this doesn’t
work, try pressing the same shortcut twice in a row.

Some sample invocations of the program appear below. The user typing the EOF character
is represented as ^D. Note that the particulars of the gradle output may differ depending on the
particular state of your gradle build, but the inputs and outputs of a working solution should
match those shown in the examples below.

$ gradle run

> Task :compileJava UP-TO-DATE

> Task :processResources NO-SOURCE

> Task :classes UP-TO-DATE

Words, words, words.

What is the matter, my lord?

Between who?

I mean, the matter that you read, my lord.^D

> Task :run

14 20

BUILD SUCCESSFUL in 18s

2 actionable tasks: 1 executed, 1 up-to-date

$ gradle run --args="a.txt b.txt"

> Task :compileJava UP-TO-DATE

> Task :processResources NO-SOURCE

> Task :classes UP-TO-DATE

> Task :run

14 20

1955 8060

BUILD SUCCESSFUL in 0s

2 actionable tasks: 1 executed, 1 up-to-date

$ gradle run --args="b.txt"

> Task :compileJava UP-TO-DATE

> Task :processResources NO-SOURCE

> Task :classes UP-TO-DATE

> Task :run

1955 8060

BUILD SUCCESSFUL in 0s

2 actionable tasks: 1 executed, 1 up-to-date

2



4 Your Tasks

Skeleton code is provided in your repository. The AVL class in src/main/java/avl/AVL.java

currently implements the search functionality for a BST.

1. Implement standard BST (not AVL) insert functionality in the provided bstInsert

method stub. As with search, the AVL class has a public bstInsert(String w) method
that calls a private bstInsert(Node n, String w) method that recursively inserts on
nodes. Notice that AVL class has a size field that should be kept up to date as words
are inserted.

2. Implement leftRotate and rightRotate helper methods to perform a rotation on a
given node. Use the lecture slides as a reference.

3. Implement rebalance to fix a violation of the AVL property caused by an insertion. In the
process, you’ll need to correctly maintain the height field of each node. Remember that
height needs to be updated any time the tree’s structure changes (insertions, rotations).

4. Implement avlInsert to maintain AVL balance in the tree after insertions using the
rebalance method.

5. Use your completed AVL tree class to efficiently (O(n log n)) count the number of unique
words found in each document processed by Vocab. Because insertion ignores duplicates,
the number of unique words will simply be the size of the tree.

6. For the final 5 points, complete some or all of the series of enhancements described below.

7. Record the total number of hours you spent on this assignment in the provided “hours.txt”
file. The file should contain one line with a single integer representing the estimated time
you took to complete the project.

4.1 Implementation notes

• Public method specifications and signatures should not be changed: if method
names, call signatures, or return values change, your code will not compile with the testing
system and you’ll receive no credit for the correctness portion of your grade.

• You may write and use as many private helper methods as you need. You are especially
encouraged to use helper methods for things like calculating balance factors, updating
heights, etc., in order to keep the code for intricate procedures like rebalance easy to
read.

• The skeleton code implements a try/catch block to skip nonexistent files in Vocab.java.
Error catching beyond this is not required - you may assume well-formed user input and
that method preconditions will not be violated.

• Be careful with parent pointers. A recursive tree traversal such as the reverse-in-order
traversal used in printTree never follows parent pointers; this means parent pointers can
be misplaced and printTree will still look normal.

• Keep in mind that the height method from Lab 4 is O(n), which means you can’t call
it on every node and expect to maintain the O(n log n) runtime in AVLInsert: instead
you need to update the height of each node along the insertion path from the bottom up,
updating each node’s height field using the heights of its children.

3



• You are provided with a test suite in src/test/java/avl/AVLTest.java. Use gradle

test often and pass tests for each task before moving onto the next.

5 Enhancements

The base assignment is worth 45/50 points. The final 5 points may be earned by completing
the following enhancements. You may also come up with your own ideas - you may want to
run them by the instructor to make sure they’re worthwhile and will result in points awarded
if successfully completed. It is highly recommended that you complete the base assignment
before attempting any enhancements.

Enhancements and git The base project will be graded based on the master branch of
your repository. Before you change your code in the process of completing enhancements, create
a new branch in your repository (e.g., git checkout -b enhancements). Keep all changes
related to enhancements on this branch—this way you can add functionality, without affecting
your score on the base project. Make sure you’ve pushed both master and enhancements
branches to GitHub before the submission deadline.

The final five points can be earned as follows:

1. (2 points) Implement remove using standard BST removal (without maintaining AVL
balance).

2. (1 point) Modify your remove method to maintain AVL balance through removals.

3. (1 point) Add a count field to the Node class and modify avlInsert and remove to
maintain count as the net number of additions/removals of a word. In other words,
count should store the number of times the word has been added minus the number of
times it has been removed. If count gets to zero, remove the node from the tree.

4. (1 point) If a single file is specified as a command line argument, print the number of
unique words over a fixed-width sliding window as the text is processed. For example, for
a window size of 30, maintain a set of the most recent 30 words; after each word is read,
print the number of unique words in the most recent 30, separated by newlines.

If you complete any of the above, explain what you did and any design decisions made in a
comment at the top of the corresponding java file.

6 Game Plan

Start small, test incrementally, and git commit often. Please keep track of the number of hours
you spend on this assignment, as you will be asked to report it in hours.txt. Hours spent will
not affect your grade.

The tasks are best completed in the order presented. Make sure you pass the tests for the
current task before moving on to the next. Rotations and rebalancing are the trickiest part.
Visit the mentors, come to office hours, or email Prof. Wehrwein if you are stuck. A suggested
timeline for completing the assignment in a stress-free manner is given below:

1. By the end of Monday 2/4: BST insertion completed and tested.

2. By Thursday, 2/7: rotations and rebalance implemented and tested.

3. By Sunday, 2/10: AVL insertion and Vocab behavior implemented and tested.

4



4. By Monday, 2/11: Any enhancements completed, hours recorded, and final changes
pushed to GitHub.

7 How and What to Submit

Submit the assignment by pushing your final changes to GitHub before the deadline. Be sure
to fill in hours.txt with a single integer representing the estimated number of hours you spent
on this assignment. If you completed any enhancements, be sure to push your enhancements
branch as well.

5



Rubric

You can earn points for the correctness and efficiency of your program, and points can be
deducted for errors in commenting, style, clarity, and following assignment instructions.

Git Repository

Code is pushed to github and hours spent appear as a lone integer in hours.txt 1 point

Code : Correctness

Unit tests (n tests passed earns d1.33ne points) 28

Vocab prints the unique and total counts of words from standard input 3

Vocab prints the unique and total counts of words from each command-line ar-
gument

3

Code : Efficiency

avlInsert maintains O(log n) performance by keeping track of node heights and
updating them as necessary

5

Vocab processes a document with n words in O(n log n) time 5

Enhancements

remove correctly removes a node from the tree 2

remove maintains AVL balance 1

The tree tracks a count for each node, inserting or incrementing on insertion and
decrementing or removing on removal.

1

Sliding window vocabulary tracking is implemented. 1

Clarity deductions (up to 2 points each)

Include author, date and purpose in a comment comment at the top of each file
you write any code in

Methods you introduce should be accompanied by a precise specification

Non-obvious code sections should be explained in comments

Indentation should be consistent

Methods should be written as concisely and clearly as possible

Methods should not be too long - use private helper methods

Code should not be cryptic and terse

Variable and function names should be informative

Total 50 points

6

Scott Wehrwein



