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Announcements



Announcements

e Interested in helping out with some CS education
research?

e Looking for someone to do some work over break on the test
cases for the programming assignments in this class. Email me
or come talk to me if you’re interested.



Goals

e Fill out course evaluations.

e Understand the basic idea behind Huffman
Coding

* Ponder some coding interview questions.



Course Evaluations

e Your feedback is helpful and | will read it
carefully (after | submit grades).

* I'm teaching 241 again in Winter, so what
you say will make a difference.



Practice Problems
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Practice Problems
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Fun

e Easier: https://codingbat.com/java

* good for recursion

e Easy -> Hard https://adventofcode.com/

e see how far into December you can get before giving up

e A couple years ago | got to ~Dec 21

e Easy -> Nuts https://projecteuler.net/

e first 50 are pretty manageable


https://codingbat.com/java
https://adventofcode.com/
https://projecteuler.net/

San T
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money can buy is 125 megabytes per second.
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Image Compression: JPEG
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PROCEEDINGS OF THE IR.E.

September

A Method for the Construction of

Minimum-Redundancy Codes*
DAVID A. HUFFMAN", ASSOCIATE, IRE

Summary-——An optimum method/of coding an ensemble of mes-
sages consisting of a finite numbei} of memhers is developed. A
minimum-redundancy code is one constructed in such a way that the
average number of coding digits per"\message is minimized.

INTRODUCTION
@NE IMPORTANT METHOD of transmitting

messages 18 to transmit in their place sequences
of symbols. If there arc more messages which
might be sent than there are kinds of symbols available,

then some of the messages must use more than one sym-

bol. If it 1s assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message 1s directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be

will be defined here as an ensemble code which, for a
message ensemble consisting of a finite number of mem-
bers, &NV, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code: |

(a) No two messages will consist of identical arrange-

ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known. ‘
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This Is a coding tree.

Encodes a mapping from
bit strings to words:

0 means go left

1 means go right

O: a

111: d

101: b

£:5 e:9

Key intuition: put common words near the root.




a b

Frequency (in thousands) 45 13

HUFFMAN(C)

1
2

O 0 JdJ ON Lt &~ W

n = |C|

O =°¢C

fori =1ton—1
allocate a new node Z

z.left = x = EXTRACT-MIN(Q)
z.right = y = EXTRACT-MIN(Q)

Z.freq = X.freq + y.freq
INSERT(Q, 2)
return EXTRACT-MIN(Q)

// return the root of the tree



a b C d e f
Frequency (in thousands) 45 13 12 16 9 S
Variable-length codeword 0 101 100 111 1101 1100
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