—~TOTMHUNT>

0110
00010
01111
0010
111
101001
11001
00111
1101

11000000
101000
10101

00011

010

01110
. 110001
1100000100
1011

ROWOZZ A
NKXg<CH®

1001

1000

0000
1100001
001101
1100000101
110000011
001100

CSCI 241

Lecture N
Huffman Coding

Announcements

Announcements

e Interested in helping out with some CS education
research?

e Looking for someone to do some work over break on the test
cases for the programming assignments in this class. Email me
or come talk to me if you’re interested.

Goals

e Fill out course evaluations.

e Understand the basic idea behind Huffman
Coding

* Ponder some coding interview questions.

Course Evaluations

e Your feedback is helpful and | will read it
carefully (after | submit grades).

* I'm teaching 241 again in Winter, so what
you say will make a difference.

Practice Problems

Practice Problems

Practice Problems

i DS SEAURREEDON L

EDITION

Fun

e Easier: https://codingbat.com/java

* good for recursion

e Easy -> Hard https://adventofcode.com/

e see how far into December you can get before giving up

e A couple years ago | got to ~Dec 21

e Easy -> Nuts https://projecteuler.net/

e first 50 are pretty manageable

https://codingbat.com/java
https://adventofcode.com/
https://projecteuler.net/

San T

This image has 4683 x 3122 pixels.

ThIS image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green
and blue | L e R - &

ThIS image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green
‘and blue. | L e R

Each value IS stored as a smgle byte (8 blts) representlng ! value
_|n the range O 256 |

ThIS image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green
,andblue ~ | L s | o

Each value IS stored as a smgle byte (8 blts) representlng ! value
_|n the range O 256 | |

So to store this |mage we need

4683 *3122* 3bytes

- = 43860978 bytes

©.=.42833 kilobytes & =
= 41.8 megabytes =

Th|s image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green
,andblue : » BRI i . i

Each value IS stored as a smgle byte (8 blts) representlng ! value
_|n the range O 256 | |

So to store this |mage we need

4683 * 3122*3 bytes

- = 43860978 bytes

g = 42833 kilobytes ~
=418 megabytes d |
A video at the same. resolutlon would reqmre 41 .8 megabytes to
store each frame. At 30 frames per second, a 5- second,@,
would occupy 6.12 gigabytes. w5

Th|s image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green
,andblue : » BRI i . i

Each value IS stored as a smgle byte (8 blts) representlng ! value
_|n the range O 256 | |

So to store this |mage we need

4683 * 3122*3 bytes

- = 43860978 bytes

g = 42833 kilobytes ~
=418 megabytes d |
A video at the same. resolutlon would reqmre 41 .8 megabytes to
store each frame. At 30 frames per second, a 5- second,@,
would occupy 6.12 gigabytes. w5

A 2-hour movie at 1080p resolution would occupy 8.61 terabytes.

Th|s image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green -
,andblue : » BRI i . i

Each value is stored as a smgle byte (8 blts) representlng a value
_|n the range 0. 256.. , e

So to store this |mage we need

4683 * 3122*3 bytes

- = 43860978 bytes

g = 42833 kilobytes ~
=418 megabytes d |
A video at the same. resolutlon would reqmre 41 .8 megabytes to
store each frame. At 30 frames per second, a 5- second,@,
would occupy 6.12 gigabytes. w5

A 2-hour movie at 1080p resolution would occupy 8.61 terabytes.

Streaming such a movie from Netflix would require 1.22 gigabytes
per second of bandwidth. The fastest home internet connection

money can buy is 125 megabytes per second.

Th|s image has 4683 X 31 22 plxels

To dlsplay Color each plxel has 3 values representlng red green -
,andblue : » BRI i . i

Each value is stored as a smgle byte (8 blts) representlng a value
_|n the range 0. 256.. , e

So to store this |mage we need
4683 * 3122 * 3bytes S
=dS860978 hilees e Whatgives?:
. A833 kilobyles = Sl "L
=418 megabytes k. |

A video at the same. resolutlon would reqmre 41 .8 megabytes to
store each frame. At 30 frames per second a o- second,@,
would occupy 6.12 gigabytes. ™ 37

A 2-hour movie at 1080p resolution would occupy 8.61 terabytes.

Streaming such a movie from Netflix would require 1.22 gigabytes
per second of bandwidth. The fastest home internet connection

money can buy is 125 megabytes per second.

Image Compression: JPEG

JPEG compression

Color space
conversion

—» Subsampling

!

R DCT

Raw
image data

!

Inverse
color space
conversion

)

—» Quantization

Inverse

subsampling

—» Encoding

«— Inverse DCT

:

JPEG-compressed I
image data

:

r«— Dequantization

«— Encoding

JPEG decompression

<

Video Compression: H.265

—

Input Video

Reference samples

Ref. |||«

SAO

DPB |

Residual +
—~ >®_. DCT & __e—»| CABAC
-rb Motion Motion Vectors - Quantization -
Estimation “l
Motion Inter
Comp. Eea ke Motion Vectors /Intra modes
—
Mode | I!'nhg Decision
red. | :
'y Intra
Intra Quantized
Est. residuals
Deblk I o D s @4)- Inverse Quantization
SO l + | & Inverse DCT
SAO Parameter
Filter Control Estimation. SAO params

HEVC Encoder Blocks

Bit-Stream
. =

Video Compression: H.265

JPEG compression

%

Input Video

Ref.

DPB

22:’5;2%’: —» Subsampling —f DCT —» Quantization —»{ Encoding
{ !
Residual + s data " mage datn
—
M— 1 ¢
m—n. Motion Motion Vectors — colg\rlir;:ce S sutl:;‘::\:?;ng l«— Inverse DCT [«—Dequantization«— Encoding
Estimation conversion
n < JPEG decompression |
Motion Inter
Comp. Motion Vectors /Intra modes
Reference samples Intra/Inter
Mode |I=nhg Decision
red. |
5 Intra
Intra Quantized
Est. residuals
-+

<« SAO

Reconstructed

oo

Filter Control

SAO Parameter
Estimation.

®+' | & Inverse DCT

Inverse Quantization

HEVC Encoder Blocks

SAQ params

Bit-Stream
2 =

Image Compression: JPEG

JPEG compression >
e SPacet | Subsampling —» DCT —» Quantization —» Encoding
conversion
Raw JPEG-compressed
image data image data
Inverse Inverse

color space r€— . «— Inverse DCT «—Dequantization<«— Encoding
conversion subsampling

< JPEG decompression

1098

PROCEEDINGS OF THE IR.E.

September

A Method for the Construction of

Minimum-Redundancy Codes*
DAVID A. HUFFMAN", ASSOCIATE, IRE

Summary-——An optimum method/of coding an ensemble of mes-
sages consisting of a finite numbei} of memhers is developed. A
minimum-redundancy code is one constructed in such a way that the
average number of coding digits per"\message is minimized.

INTRODUCTION
@NE IMPORTANT METHOD of transmitting

messages 18 to transmit in their place sequences
of symbols. If there arc more messages which
might be sent than there are kinds of symbols available,

then some of the messages must use more than one sym-

bol. If it 1s assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message 1s directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be

will be defined here as an ensemble code which, for a
message ensemble consisting of a finite number of mem-
bers, &NV, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code: |

(a) No two messages will consist of identical arrange-

ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known. ‘

This Is a coding tree.

Encodes a mapping from
bit strings to words:

0 means go left

1 means go right

O: a

111: d

101: b

This Is a coding tree.

Encodes a mapping from
bit strings to words:

0 means go left

1 means go right

O: a

111: d

101: b

£:5 e:9

Key intuition: put common words near the root.

a b

Frequency (in thousands) 45 13

HUFFMAN(C)

1
2

O 0 JdJ ON Lt &~ W

n = |C|

O =°¢C

fori =1ton—1
allocate a new node Z

z.left = x = EXTRACT-MIN(Q)
z.right = y = EXTRACT-MIN(Q)

Z.freq = X.freq + y.freq
INSERT(Q, 2)
return EXTRACT-MIN(Q)

// return the root of the tree

a b C d e f
Frequency (in thousands) 45 13 12 16 9 S
Variable-length codeword 0 101 100 111 1101 1100

f:5

e:9

c:12

b:13

d:16

a:45

Smallest two: 5, 9

£:5

e:9

c:12

b:13

d:16

a:45

Smallest two: 5, 9

£:5 e9 | |c:12| |b:13| |d:16| [a:45
c:12| |b:13 @ d:16| |a:45
0 1
£:5 e:9

Smallest two: 5, 9

Smallest two: 12, 13

£:5

e:9

c:12

b:13

d:16

a:45

c:12

b:13

d:16

a:45

Smallest two: 5, 9

Smallest two: 12, 13

£:5 e9 | |c:12| |b:13| |d:16| [a:45
c:12| |b:13 @ d:16| |a:45
0 1
£:5 e:9
@ d:16 a:45
0 1 0 1
£:5 e:9 c:12| |b:13

Smallest two: 5, 9

Smallest two: 12, 13

Smallest two: 14, 16

£:5 e9 | |c:12| |b:13| |d:16| |a:45
c:12| |b:13 @ d:16| |a:45
0 1
£:5 e:9
@ d:16 a:45
0 1 0 1
£:5 e:9 c:12| |b:13

Smallest two: 5, 9

Smallest two: 12, 13

Smallest two: 14, 16

£:5 e9 | |c:12| |b:13| |d:16| [a:45
c:12| |b:13 @ d:16| |a:45
0 1
£:5 e:9
@ d:16 a:45
0 1 0 1
£:5 e:9 c:12| |b:13
a:45

A

c:12

Smallest two: 5, 9

Smallest two: 12, 13

Smallest two: 14, 16

Smallest two: 25, 30

£:5 e9 | |c:12| |b:13| |d:16| |a:45
c:12| |b:13 @ d:16| |a:45
0 1
£:5 e:9
@ d:16 a:45
0 1 0 1
£:5 e:9 c:12| |b:13
a:45

A

c:12

a:45

c:12

A

Smallest two: 25, 30

c:12

b:13

a:45

A

Smallest two: 25, 30

c:12

b:13

a:45

Huffman Tree:

A

Smallest two: 25, 30

c:12

b:13

a:45

Huffman Tree:

Smallest two: 25, 30

a:45

c:12| |b:13

Huffman Tree:

a:45

Coding Huffman Coding

