
Names: December 5th, 2018

Computer Science 241

In-Class Exercise: Greatest Hits

1. Here’s an implementation of Merge sort:

/** Sorts a[start..end] using mergesort. Pre: 0 <= start <= end < a.length */

public void mergeSort(int[] a, int start, int end) {

if (end-start <= 1) {

return;

}

int mid = (start+end)/2;

mergeSort(a, start, mid);

mergeSort(a, mid, end);

merge(a, start, mid, end);

}

It makes use of the helper method merge that implements the following spec and runs in
O(end-start) time.

/** Merges the two sorted subarrays a[start..mid] and a[mid..end] into a

* sorted array a[start..end] Pre: 0 <= start <= mid <= end < a.length */

public void merge(int[] a, start, mid, end);

(a) Let n = end − start. Give the recurrence relation that describes the runtime of the
mergeSort method:

T (0) =

T (n) =

(b) What is the asymptotic runtime of mergeSort?

2. Circle T or F to indicate whether the statement is true or false.

(a) T / F The partition step of QuickSort is the “divide” phase of divide-and-conquer,
whereas the merge step of MergeSort is the “conquer” phase.

(b) T / F Finding an element in a binary tree is worst-case O(n).

(c) T / F Implementing the Set ADT with a linked list would make insertion more efficient
than using an array.

(d) T / F A hash table with a large load factor is more time-efficient but less space-efficient
than one with a small load factor.

3. (1 pt) Which of the following could be the result of a call of the partition method in
QuickSort?

(a) [2, 5, 2, 4, 1]

(b) [6, 2, 7, 8, 9]

(c) [6, 7, 2, 3, 4]

(d) [7, 9, 3, 4, 5]

4. Consider the following Binary Search Tree:

10

14

18

20

11

13

6

5

(a) Insert 19 using standard BST insert and draw it into the tree above.

(b) Write the sequence of necessary rotations to rebalance the tree, using “direction(value)”
to denote a rotation on a node with that value. For example, left(10) indicates a left
rotation on the node with value 10.

5. Consider the following three algorithms.

Alg1(n):

for a = 0..n:

for b = 0..n:

print a + b

Alg2(n):

for a = 0..600:

for b = 0..(n/2):

print a + b

Alg3(n):

for a = 0..n:

for b = a..n:

print a + b

For each algorithm, fill the table below to indicate the number of times the algorithm prints a
value and the Big-O runtime class, both in terms of n.

Alg1 Alg2 Alg3

Items Printed

Big-O Runtime Class

