CSCI 241

Lecture 27
Runtime Analysis of Recursive Methods
Max-flow / Min-cut
Greatest Misses

Announcements

e A3 out soonish

e A4 graded next week

Goals

 Be able to solve simple recurrence
relations to analyze the runtime of recursive
methods.

e Get exposure to the max-flow/min-cut
problem and some of its applications.

* Be able to solve all the hardest quiz
problems from throughout the quarter.

Runtime Analysis: Review

e Why? We want a measure of performance
that is

* Independent of what computer we run it on.
Solution: count operations instead of clock time.

* Dependence on problem size is made explicit.

Solution: express runtime as a function of n
(or whatever variables define problem size)

 Simpler than a raw count of operations and focuses on
performance on large problem sizes.

Solution: ignore constants, analyze asymptotic runtime.

Runtime Analysis: Review
e How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of the
algorithm.

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Counting Strategies:

1. Simple counting:
* How long does each line take?

* How many times does each line happen?
 Multiply and total it up.

2. Aggregate analysis:

* Reason about how many times a given line is executed
independent of loops/code structure:

e Example: Radix sort for each bucket:
for each element:

// doesn’t happen 10*n times

e Example: Prim’s algorithm

for each vertex:
for each edge:
// doesn’t happen v*e times

Counting Strategies:
3. Recurrences

e Counting is trickier without loop bounds.

public int listSize(Node n) {
if (n == null) {
return 0;

}

return 1 + listSize(n.next);

}

Counting Strategies:
3. Recurrences

e Let T(n) be the runtime on a problem of size n.

public int listSize(Node n) {
if (n == null) {
return 0;

} '
return 1 + listSize(n.next); 1 + T(n-1)

}
TO) =1+ 1
Tn) =1+1+ T(n-1)

1 _ (only 1 of these
can happen)

Counting Strategies:
3. Recurrences

e Let T(n) be the runtime on a problem of size n.

public int listSize(Node head) {
if (head == null) { 1
return 0O; 1

}
return 1 + listSize(head.next); -1 + T(n-1)

T(0) =2
T(n) =2 + T(n-1)
=2+ 2 + T(n-2)

_2+2+2+Tm3)
— 24242+, .+ T(0)

(there are n of these in total!)

Counting Strategies:
3. Recurrences

/** Return the index of v in A[s..e], or -1 if it

* doesn’t exist. Pre: 0 <= s <= e < A.length */

public int binSearch(int[] A, int v, int s, int e) {

}

if ((e - s) == 0) {1 Let n = e-s:
];
: return 1 T(O) _ 9
int mid = (e+s)/2; | T(n) =4 + T(n/2)
if (A[mid] == v) { 1 =4 +4 + T(n/4)
return mid; 1 =4 +4 + 4 + T(n/8)

else if (A[mid] < v) { 1
return binSearch(A, v, s, mid); [(n/2) . (only 1 of these

} else { can happen)
return binSearch(A, v, mid, e); [(n/2) i

}

Counting Strategies:
3. Recurrences

/** Return the index of v in A[s..e], or -1 if it

* doesn’t exist. Pre: 0 <= s <= e < A.length */

public int binSearch(int[] A, int v, int s, int e) {

}

if ((e -s) == 0) {1 Let n = e-s:
-1;
} return 1 T(O) _»
int mid = (e+s)/2; |1 T(n) =4 + T(n/2)
if (A(mid] == v) { 1 =4 + 4 + T(n/4)
return mid; 1

. . =4 +4+4+T(n/8)
else if (A[mid] < v) { 1

return binSearch(A, v, s, mid); [(n/2)
} else {
return binSearch(A, v, mid, e); [(n/2)
} =4+4+4+ ...+ T(0)
=4 +4+4+ ... +2

(there are log(n) of these in total')

Graph Cuts:
Max Flow/ Min Cut

(a) Image with seeds. (d) Segmentation results.
Background Background
@ terminal @ terminal
Cla'i

‘--‘
™=

terminal terminal

(b) Graph. (¢) Cut.

