
CSCI 241
Lecture 26


Review of Runtime Analysis Techniques

Max-flow / Min-cut



Announcements
• Final Exam: Study guide is updated with 

objectives from the second half of the quarter


• Study tips:

1. Start now. You’ve taken 7 quizzes and 1 exam. There are 8 

days between now and the exam.


2. ABCD questions and other in-class assessments: these 
resemble the “easy” points on the exam.


3. Flipping through slides, nodding, and pensively saying “ah 
yes, I remember this” is not a good study strategy. 
Solve problems. If you run out of problems, make up more.



Announcements
• No new material this week will be on the exam.


• There will be in-class exercises every day this 
week.


• Some fun advanced topics will be introduced at a 
high level.



Goals
• Review the following techniques we’ve used 

for runtime analysis up to this point:


• Counting operations


• Aggregate analysis


• Be able to analyze the runtime of Prim’s 
algorithm as implemented in class.


• Be able to analyze the runtime of Dijkstra’s 
algorithm as implemented in A4.



Runtime Analysis: Review
• Why? We want a measure of performance 

that is


• Independent of what computer we run it on. 

• Dependence on problem size is made explicit. 
 

• Simpler than a raw count of operations and focuses on 
performance on large problem sizes.

Solution: count operations instead of clock time.

Solution: express runtime as a function of n 
(or whatever variables define problem size)

Solution: ignore constants, analyze asymptotic runtime.




Runtime Analysis: Review
• How?


1. Count the number of primitive (constant-time) 
operations that occur over the entire execution of the 
algorithm.


2. Drop constants and lower-order terms to find the 
asymptotic runtime class.



Counting Operations
What’s a constant-time operation?


• Anything that doesn’t depend on the input 
size:


• Reading/writing from/to a variable or array location.


• Evaluating an arithmetic or boolean expression.


• Returning from a method.



Counting Operations

Key intuition: 

• These don’t take identical amounts of time, but the times are 

within a constant factor of each other.

• Same for running the same operation on a different computer.

What’s a constant-time operation?


• Anything that doesn’t depend on the input 
size:


• Reading/writing from/to a variable or array location.


• Evaluating an arithmetic or boolean expression.


• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;

return k;



Counting Operations
What’s a constant-time operation?


• Anything that doesn’t depend on the input 
size:


• Creating a new object? Depends:


• if you only have to initialize O(1) memory, it’s O(1) 

• If you have to initialize O(n) memory, it’s O(n).

Node n = new Node();

int[] a = new int[n];
java has to set all n entries to 0

AList<Node> a = new AList<Node>(n);
constructor creates an array of size n!



Counting Operations
What’s not a constant-time operation?


• Anything that does depend on the input 
size:


• Looping over all values in an array of size n.


• Recursing over a tree of height log(n).


• Searching a graph of |V| nodes and |E| edges.


• Most nontrivial algorithms / data structure operations 
we’ve covered in this class.



Counting Operations
What happens when the number of times 
executed is variable / depends on the data?


• We have to specify whether we want worst-
case, average-case (aka expected-case), or 
best-case runtime.
public int findMax(int[] a) {
  int currentMax = a[0];
  for (int i = 1; i < a.length; i++) {
    if (currentMax < a[i]) {
      currentMax = a[i];
    }
  }
}

# times executed 
depends on 
contents of a!



Counting Operations
What happens when the number of times 
executed is variable / depends on the data?


• Worst-case is usually the important one, 
with notable exceptions for algorithms that 
beat asymptotically faster algorithms in 
practice:


• Quicksort generally beats Mergesort in practice.


• HashMaps generally beat TreeMaps unless keys need 
to be sorted.



Counting Strategies:  
1. Simple counting

/** Insert val into the list in after pred.
 * Precondition: pred is not null */
public void addAfter(Node pred, int val) { 
  Node newNode = new Node(val); 
  new_node.next = pred.next; 
  pred.next = newNode; 
} 

/** A singly linked list node */
public class Node {
  int value;
  Node next;
  public Node(int v) {
    value = v;
  }
}

1
1
1



Counting Strategies:  
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
   loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
  loopBody(i);
  i++;
}

1 per iteration

1
1 per iteration

1 per iteration

How many iterations? 

i takes on values 0..n, of which there are n.



Counting Strategies:  
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
   loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
  loopBody(i);
  i++;
}

How many iterations? 

i takes on values 0..n, of which there are n.

1
n
n * runtime of loopBody
n

Total runtime:

1 + 2n + n*[runtime of loopBody]



Counting Strategies:  
1. Simple counting

/** An ArrayList-like growable array. */
public class AList<T> {
  int size;
  T[] a;
  
  // other methods
  public void addFirst(T val) {
    growIfNeeded(size+1);
    for (int i = 0; i < size; i++) {
      a[size-i] = a[size-i-1];
    }
    a[0] = val;
  }
}

1 or n

1       happens n times

Let n = size.

1
Worst-case: n + n + 1 = 2n+1, which is O(n)

Best-case: 1 + n + 1 = n+2, which is O(n)



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(1)
O(1)
1



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(1)
O(1)
1

*10



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(1)
O(1)
1

*10
*n



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(1)
O(1)
1

*10
*n

How many times is this actually done?




Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(1)
O(1)
1

*10
*n

How many times is this actually done?

n elements went into buckets, so only n elements 
can be removed. The whole red box does 3n ops.



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

O(1)
O(1)

1

O(n)

*10
*n



Counting Strategies:  
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {
      int key = getDigit(A[i], d);
      buckets[key].add(A[i]);
    }
    int k = 0;
    for (int i = 0; i < 10; i++) {
      while (buckets[i].peek() != null) {
        A[k] = buckets[i].remove();
        k++;
      }
    }
  }
}

1

O(n)

*10

O(n)

Overall: 10 * O(n) + 1 + O(n) => O(n)



Analyzing Prim’s Algorithm


