

CSCI 241

Lecture 26 Review of Runtime Analysis Techniques Max-flow / Min-cut

Announcements

- Final Exam: Study guide is updated with objectives from the second half of the quarter
- Study tips:
	- 1. Start now. You've taken 7 quizzes and 1 exam. There are 8 days between now and the exam.
	- 2. ABCD questions and other in-class assessments: these resemble the "easy" points on the exam.
	- 3. Flipping through slides, nodding, and pensively saying "ah yes, I remember this" is **not** a good study strategy. **Solve problems.** If you run out of problems, make up more.

Announcements

- No new material this week will be on the exam.
- There will be in-class exercises every day this week.
- Some fun advanced topics will be introduced at a high level.

Goals

- Review the following techniques we've used for runtime analysis up to this point:
	- Counting operations
	- Aggregate analysis
- Be able to analyze the runtime of Prim's algorithm as implemented in class.
- Be able to analyze the runtime of Dijkstra's algorithm as implemented in A4.

Runtime Analysis: Review

- Why? We want a measure of performance that is
	- **Independent** of what computer we run it on. Solution: count **operations** instead of clock time.
	- Dependence on **problem size** is made explicit. Solution: express runtime as a function of **n** (or whatever variables define problem size)
	- **Simpler** than a raw count of operations and focuses on performance on **large problem sizes**.

Solution: ignore constants, analyze **asymptotic** runtime.

Runtime Analysis: Review

- How?
	- 1. Count the number of primitive (constant-time) operations that occur over the entire execution of the algorithm.
	- 2. Drop constants and lower-order terms to find the **asymptotic runtime class**.

What's a constant-time operation?

- Anything that doesn't depend on the input size:
	- Reading/writing from/to a variable or array location.
	- Evaluating an arithmetic or boolean expression.
	- Returning from a method.

What's a constant-time operation?

- Anything that doesn't depend on the input size:
	- Reading/writing from/to a variable or array location. int $i = 2$; int $b = 4$; $a[i] = b$;
	- Evaluating an arithmetic or boolean expression.

int $i = 0$; int $j = i+4$; int $k = i * j$;

• Returning from a method. return k;

Key intuition:

- These don't take identical amounts of time, but the times are within a **constant factor** of each other.
- Same for running the **same** operation on a **different** computer.

What's a constant-time operation?

- Anything that doesn't depend on the input size:
	- Creating a new object? Depends:
		- if you only have to initialize O(1) memory, it's O(1) Node n = new Node();
		- If you have to initialize O(n) memory, it's O(n). $int[j]$ a = new $int[n]$; java has to set all n entries to 0 AList<Node> a = new AList<Node>(n); constructor creates an array of size n!

What's **not** a constant-time operation?

- Anything that **does** depend on the input size:
	- Looping over all values in an array of size n.
	- Recursing over a tree of height log(n).
	- Searching a graph of $|V|$ nodes and $|E|$ edges.
	- Most nontrivial algorithms / data structure operations we've covered in this class.

What happens when the number of times executed is variable / depends on the data?

• We have to specify whether we want worstcase, average-case (aka expected-case), or best-case runtime.

```
public int findMax(int[] a) {
  int currentMax = a[0];
  for (int i = 1; i < a. length; i^{++}) {
     if (currentMax < a[i]) {
      currentMax = a[i]; }
 }
}
                           # times executed 
                           depends on 
                           contents of a!
```
Counting Operations What happens when the number of times executed is variable / depends on the data?

- Worst-case is usually the important one, with notable exceptions for algorithms that beat asymptotically faster algorithms in practice:
	- Quicksort generally beats Mergesort in practice.
	- HashMaps generally beat TreeMaps unless keys need to be sorted.

Counting Strategies: 1. Simple counting

```
/** Insert val into the list in after pred.
  * Precondition: pred is not null */
public void addAfter(Node pred, int val) {
 Node newNode = new Node(val);
1
 newnode.next = pred.next;pred.next = newNode; -
/** A singly linked list node */
public class Node {
   int value;
   Node next;
   public Node(int v) {
    value = v;
   }
}
                                         1
                                         1
```
Counting Strategies: 1. Simple counting - for loop

```
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

```
// is equivalent to:
```
}

```
int i = 0; <u>- 1</u>
while (i < n) { - 1 per iteration
 loopBody(i);
1 per iteration
 i++;
1 per iteration
```
How many iterations? i takes on values 0..n, of which there are n.

Counting Strategies: 1. Simple counting - for loop

```
for (int i = 0; i < n; i++) {
    loopBody(i);
}
// is equivalent to:
1 + 2n + n*[runtime of loopBody]int i = 0;
1
while (i < n) {
n
loopBody(i); - n * runtime of loopBody
 i++;
n
}
 How many iterations? 
  i takes on values 0..n, of which there are n.
                    Total runtime:
```
Counting Strategies: 1. Simple counting

```
/** An ArrayList-like growable array. */
public class AList<T> {
   int size;
  T[] a;
   // other methods
   public void addFirst(T val) {
                                 Let n = size.
```

```
 growIfNeeded(size+1);
    for (int i = 0; i < size; i++) {\longleftarrowa[size-i] = a[size-i-1]; -1 happens n times
     }
    a[0] = val; —
 }
                                         -1 or n
                                  1
      Worst-case: n + n + 1 = 2n+1, which is O(n)
```
Best-case: $1 + n + 1 = n+2$, which is $O(n)$

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A. length; i^{++}) {
int key = getDigit(A[i], d); \longrightarrow 0(1)
      buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
 while (buckets[i].peek() != null) {
O(1)
        A[k] = \text{buckets}[i].remove();k++; }
 }
 }
                                           O(1)1
                                           O(1)
                                           1
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) { —
    for (int i = 0; i < A. length; i^{++}) {
int key = getDigit(A[i], d); \longrightarrow 0(1)
      buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
 while (buckets[i].peek() != null) {
O(1)
        A[k] = \text{buckets}[i]. remove();
        k++; }
 }
 }
                                           O(1)1
                                           O(1)
                                           1
                                                  *10
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A.length; i++) {-int key = getDigit(A[i], d); \longrightarrow 0(1)
      buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
 while (buckets[i].peek() != null) {
O(1)
        A[k] = \text{buckets}[i].remove();k++; }
 }
 }
                                           O(1)1
                                           O(1)
                                           1
                                                  *10
                                                {}^{\star}n
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) { —
    for (int i = 0; i < A. length; i++) {
      int key = getDigit(A[i], d);buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
 while (buckets[i].peek() != null) {
O(1)
        A[k] = \text{buckets}[i].remove();k++; }
 }
                                           O(1)O(1)1
                                           O(1)
                                           1
                                                  *10
                                                {}^{\star}n
            How many times is this actually done?
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) { —
    for (int i = 0; i < A. length; i^{++}) {
      int key = getDigit(A[i], d);buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
 while (buckets[i].peek() != null) {
O(1)
        A[k] = \text{buckets}[i]. remove();
        k++; }
 }
 }
                                             O(1)O(1)1
                                             O(1)
                                             1
                                                    *10
                                                  {}^{\star}n
            How many times is this actually done?
        n elements went into buckets, so only n elements 
        can be removed. The whole red box does 3n ops.
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A. length; i++) {-
int key = getDigit(A[i], d); \longrightarrow 0(1)
      buckets[key].add(A[i]); -
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
       while (buckets[i].peek() != null) {
        A[k] = \text{buckets}[i]. remove();
        k++; }
 }
                                            O(1)1
                                            O(n)*10
                                                 {}^{\star}n
```

```
/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
  for (int d = 0; d < 10; d++) {
    for (int i = 0; i < A. length; i++) {
       int key = getDigit(A[i], d);
       buckets[key].add(A[i]);
 }
     int k = 0;
    for (int i = 0; i < 10; i++) {
       while (buckets[i].peek() != null) {
        A[k] = \text{buckets}[i]. remove();
        k++; }
 }
                                           1
                                            O(n)*1()O(n)
```
Overall: $10 * O(n) + 1 + O(n) = O(n)$

Analyzing Prim's Algorithm