5

<BIG-O-CHEATSHEET:> ,
P <l > ~ Claments 041), 8(log m)

DATA STRUCTURE www i oChant shand. Com ARRAY SORTING
Operstions Algorilhma

f ‘

D Coresast » ol

o0azin)
0(n)
o(1)
) o
oAn) on
Bllag(n :) =)
B{1) a1 o) Ly
Dleg(r)l @ Xri) of:)
O0ogle) Dol Gilog 1) <)
Ofagial) Dllag(i ! slkcglrd Ofogled) (o g
QUop] Diealt Soms Okl Oficeledl Wloend Hrk
eJope) Big(ny Slogm Lpeg o Ll) “{n)
afoplsl) Blleg(i Soglsy) Okglit Ofoglel) Sog)w

fogie) Dikglny Glops Oir} o o)

CSCI 241

Lecture 26
Review of Runtime Analysis Techniques
Max-flow / Min-cut

Announcements

e Final Exam: Study guide is updated with
objectives from the second half of the quarter

e Study tips:

1. Start now. You've taken 7 quizzes and 1 exam. There are 8
days between now and the exam.

2. ABCD questions and other in-class assessments: these
resemble the “easy” points on the exam.

3. Flipping through slides, nodding, and pensively saying “ah
yes, | remember this” is not a good study strategy.
Solve problems. If you run out of problems, make up more.

Announcements

e No new material this week will be on the exam.

 There will be in-class exercises every day this
week.

e Some fun advanced topics will be introduced at a
high level.

Goals

* Review the following techniques we’ve used
for runtime analysis up to this point:

e Counting operations
 Aggregate analysis

e Be able to analyze the runtime of Prim’s
algorithm as implemented in class.

e Be able to analyze the runtime of Dijkstra’s
algorithm as implemented in A4.

Runtime Analysis: Review

e Why? We want a measure of performance
that is

* Independent of what computer we run it on.
Solution: count operations instead of clock time.

* Dependence on problem size is made explicit.

Solution: express runtime as a function of n
(or whatever variables define problem size)

 Simpler than a raw count of operations and focuses on
performance on large problem sizes.

Solution: ignore constants, analyze asymptotic runtime.

Runtime Analysis: Review
e How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of the
algorithm.

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Counting Operations

What’s a constant-time operation?

 Anything that doesn’t depend on the input
size;

e Reading/writing from/to a variable or array location.

e Evaluating an arithmetic or boolean expression.

e Returning from a method.

Counting Operations

What’s a constant-time operation?

 Anything that doesn’t depend on the input
size;

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[1] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = 1+4; int k = 1i*7j;
e Returning from a method.
Key intuition:
e These don’t take identical amounts of time, but the times are
within a constant factor of each other.
e Same for running the same operation on a different computer.

return Kk;

Counting Operations

What’s a constant-time operation?

 Anything that doesn’t depend on the input
size;

e Creating a new object? Depends:

e |f you only have to initialize O(1) memory, it’'s O(1)

Node n = new Node();

e |f you have to initialize O(n) memory, it’'s O(n).
int[] a

new int[n];

java has to set all n entries to 0
AList<Node> a = new AList<Node>(n);
constructor creates an array of size n!

Counting Operations

What’s not a constant-time operation?

 Anything that does depend on the input
size:

e |Looping over all values in an array of size n.
e Recursing over a tree of height log(n).
e Searching a graph of |V| nodes and |E| edges.

e Most nontrivial algorithms / data structure operations
we’ve covered in this class.

Counting Operations

What happens when the number of times
executed is variable / depends on the data?

* \We have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.

public int findMax(int[] a) {

int currentMax = a[0];
for (int i = 1; i < a.length; i++) {
if (currentMax < a[i]) {
currentMax = a[il];| #times executed
} depends on

} ; contents of al

Counting Operations

What happens when the number of times
executed is variable / depends on the data?

 Worst-case Is usually the important one,
with notable exceptions for algorithms that

beat asymptotically faster algorithms in
practice:

e Quicksort generally beats Mergesort in practice.

e HashMaps generally beat TreeMaps unless keys need
to be sorted.

Counting Strategies:
1. Simple counting

/** A singly linked list node */
public class Node {

int value;

Node next;

public Node(int v) {

value = v;

}

}

/** Insert val into the list in after pred.
* Precondition: pred is not null */
public void addAfter (Node pred, int wval) {

Node newNode = new Node(val); 1
new node.next = pred.next; 1
pred.next = newNode; 1

}

Counting Strategies:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; 1++) {
loopBody (1) ;
}

// is equivalent to:

int 1 = 0; 1

while (i < n) { 1 per iteration
loopBody (1) ; 1 per iteration
i++; 1 per iteration

}

How many iterations?
| takes on values 0..n, of which there are n.

Counting Strategies:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; 1++) {
loopBody (1) ;
}
Total runtime:
// is equivalent to: 1 + 2n 4+ n*[runtime of loopBody]

int i = 0; 1

while (1 < n) { N
loopBody (i) ; n * runtime of loopBody
i++; N

}

How many iterations?
| takes on values 0..n, of which there are n.

Counting Strategies:
1. Simple counting

/** An ArrayList-like growable array. */
public class AList<T> {
int size;
T[] a;
Let n = size.
// other methods
public void addFirst(T val) {
growIfNeeded(size+1); 1 orn
for (int 1 = 0; 1 < size; 1++) { « |
a[size-i] = a[size-i-1]; —1 happens n times
}
a[0] = val; 1

; Worst-case: n + n + 1 = 2n+1, which is O(n)

/ Best-case: 1 + n + 1 = n+2, which is O(n)

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
for (int d = 0; d < 10; d++) {
for (int 1 = 0; 1 < A.length; i++) {

int key = getDigit(A[i], d); O(1)
buckets|[key].add(A[1]); O(1)
}
int k = 0; 1
for (int i = 0; i < 10; i++) {
while (buckets[i].peek() != null) { O(1)
A[k] = buckets[i].remove(); O(1)
k++; 1
}
}

}

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {

for (int d = 0; d < 10; d++) {
for (int 1 = 0; i < A.length; i++) {

int key = getDigit(A[i], d); O(1)
buckets|[key].add(A[1]); O(1)
}
int k = 0; 1
for (int i = 0; i < 10; i++) {
while (buckets[i].peek() != null) { O(1)
A[k] = buckets[i].remove(); O(1)
k++; 1
}
}

}

10

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {

for (int d = 0; d < 10; d++) {

for (int 1 = 0; i < A.length; i++) {

int key = getDigit(A[i], d); O(1)
buckets|[key].add(A[1]); O(1)
}
int k = 0; 1
for (int i = 0; i < 10; i++) {
while (buckets[i].peek() != null) { O(1)
A[k] = buckets[i].remove(); O(1)
k++; 1
}
}

}

10

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {

for (int d = 0; d < 10; d++) {
for (int i = 0; i < A.length; i++) { n
int key = getDigit(A[i], d); O(1)
buckets|[key].add(A[1]); O(1)
}
int k = 0; 1
for (int i = 0; i < 10; i++) {
while (buckets[i].peek() != null) { O(1)
A[k] = buckets[i].remove(); O(1)
K++; /]
} How many times is this actually done?
}

10

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {

for (int d = 0; d < 10; d++) { *10
for (int i = 0; i < A.length; i++) { n
int key = getDigit(A[i], d); O(1)
buckets|[key].add(A[1]); O(1)

}
int k = 0; 1
for (int i = 0; i < 10; i++) {
while (buckets[i].peek() != null) { O(1)
A[k] = buckets[i].remove(); O(1)
K++; /]
} How many times is this actually done?

} nelements went into buckets, so only n elements
} can be removed. The whole red box does 3n ops.

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
for (int d = 0; d < 10; d++) { *10
for (int 1 = 0; 1 < A.length; i++) { *n
int key = getDigit(A[i1], d); O(1)
buckets[key].add(A[1]); O(1)
}
int k = 0; 1
for (int 1 = 0; 1 < 10; 1i++) {
while (buckets[1i].peek() != null) {
A[k] = buckets[i].remove();
k++;

}

}

Counting Strategies:
2. Counting in Aggregate

/** sorts A using LSD radix sort */
public void radixSortQueue(int[] A) {
for (int d = 0; d < 10; d++) { *10

for (int i = 0; i < A.length; i++) {
int key = getDigit(A[1], d);
buckets[key].add(A[1]);
! ofn)
int k = 0; 1
for (int 1 = 0; 1 < 10; 1++) {
while (buckets[i].peek() != null) {
A[k] = buckets[i].remove();
k++;
} O(n)
}

) Overall: 10 * O(n) + 1 + O(n) => O(n)

Analyzing Prim’s Algorithm

