
CSCI 241
Lecture 25

Greedy Algorithms, MSTs, Prim’s Algorithm

X

Happenings
• Tuesday, 12/4 – AWC Bake Sale – 9 am – 2 pm in the CF

1st Floor Lobby

• Tuesday, 12/4 – CS Study Break! – 3 pm in the CF 4th Floor
Lobby

• Wednesday, 12/5 – Cybersecurity Career Taxonomy with Jeff
Costlow, Deputy CISO of ExtraHop – 5 pm in CF 125

• Thursday, 12/6 – CS Internship Poster Session – 3 – 5 pm in
the CF 1st Floor Hallways

• Then on Saturday, 12/10, Aran Clauson invites you to Buffalo
Wild Wings for a fundraiser to support our local CAP squadron!

• 10% of the proceeds from your meal will be donated if
you show your server this coupon!

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fawc-bake-sale-2&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190906367&sdata=JBYjdKr0d7w5oDzqIZnzO3rac4gB%2BdHJUPC3pfTU67I%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcs-study-break-5&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190916372&sdata=eoEsNXJp9sZ9ft1F%2BagBoHBoCf7st3bhI927xgjetEc%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-security-career-taxonomy&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190926377&sdata=3Qf0Stl%2BGRRbwFsl%2B7BMFyzfE05sUg38pD9MXidIzDQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-security-career-taxonomy&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190926377&sdata=3Qf0Stl%2BGRRbwFsl%2B7BMFyzfE05sUg38pD9MXidIzDQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcybersecurity-lecture-series-security-career-taxonomy&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190926377&sdata=3Qf0Stl%2BGRRbwFsl%2B7BMFyzfE05sUg38pD9MXidIzDQ%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fcs-internship-poster-session&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190926377&sdata=QdS8pWVxPOChpJH91ykjmg%2Bhuk%2B99hcFuf1gLAEYoX0%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Ffile%2Fcap-fundraiser&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7C9fc599284a4740cf15d508d656ef4e86%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636791983190936391&sdata=yrGCDUQoKZFlSxQ3KNsrllg1JtQeL6keN%2Fr9GaKyEbg%3D&reserved=0

Announcements
• Grades: Canvas averages do not reflect your

current grade in absolute terms. As a very rough
guideline, add 10% to your current average.

• A4 (10%) and the final exam (20%) are still to come.

• A3 is yet to be graded but I anticipate higher scores than A1
and A2 because you had the tests.

• A2: You can earn back half of any unit test correctness points
you lost. Deadline to submit revised code is in a week.

Goals
• Be able to run Kruskal’s algorithm and

Prim’s algorithm on a graph on paper.

• Understand how to implement Prim’s
algorithm using a priority queue of edges.

Finding a MST:
Greedy algorithms

• Kruskal’s Algorithm:

• Add the minimum-weight edge that does not form a
cycle.

• Prim’s Algorithm:

• Add the minimum-weight edge from the current
spanning tree that does not form a cycle.

These are greedy algorithms.

Greedy Algorithms

Greedy Algorithms
• Algorithms that fail the marshmallow test.

Starting at x, climb to the highest point.

Greedy algorithm: walk uphill until you can’t go up any more.

X

Local optimumGlobal optimum

Greedy algorithms
/** Returns the smallest possible Set of
 * coins with total value n */
makeChange(n):
 Set<Coin> change;
 while n > 0:
 Coin c = the largest Coin with value < n
 change.add(c)
 n = n - c
 return change;

This is a greedy algorithm.

• With US coin values (1, 5, 10, 25), it works.

• With other coin systems, it doesn’t: try out (1,5,7)

• For what coin systems does the greedy algorithm work?

https://arxiv.org/pdf/0809.0400v2.pdf

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

both algorithms have two choices at this point

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

done!

Proof that Kruskal and Prim
produce optimal MSTs

• On the final

• Structure of the proof:

• Show that the algorithm maintains an invariant: the
invariant is true after initialization, each iteration, and
termination.

• Show that the invariant and the termination condition
(e.g., |V’| == |V|) implies that the tree is a MST.

jk jk probably covered in CSCI 405

Kruskal and Prim

3

6
4

5

2

4

3

6
4

5

2

4

Kruskal Prim

Add the smallest-weight edge
that does not introduce a cycle.

Add the smallest-weight edge
with one endpoint in the

current tree.

done!

Kruskal and Prim:
Implementation

Kruskal Prim

Add the smallest-weight edge

 that does not introduce a
cycle.

Add the smallest-weight edge

 with one endpoint in the
current tree.

Heap<Edge,Double>

Check with DFS?

Sounds expensive.

Maintain a Set of nodes

currently in the tree.

Kruskal and Prim:
Implementation

Kruskal Prim

Add the smallest-weight edge

 that does not introduce a
cycle.

Add the smallest-weight edge

 with one endpoint in the
current tree.

Heap<Edge,Double>

Check with DFS?

Sounds expensive.

Maintain a Set of nodes

currently in the tree.

Prim: Implementation
Prim(s):
 V1 = {s}; # vertices in spanning tree
 E1 = {}; # edges in spanning tree

 #inv: (V1, E1) is a tree, V1 ⊆ V, E1 ⊆ E
 while (V1.size() < V.size()) {
 Pick an edge (u,v) with:
 min weight, u in V1,
 v not in V1;
 Add v to V1;
 Add edge (u, v) to E1
 }

maintain set of
edges with

• u in V1

• v not in V1

Prim: Implementation
Prim(s):
 V1 = {s}; # vertices in spanning tree
 E1 = {}; # edges in spanning tree
 S = {Edges leaving s}
 #inv: (V1, E1) is a tree, V1 ⊆ V, E1 ⊆ E
 # (u,v) is in S iff u is in V1 and v is not
 while (V1.size() < V.size()) {
 (u,v) = remove edge with min weight from S

 Add v to V1;
 Add edge (u, v) to E1
 }

Prim: Implementation
Prim(s):
 V1 = {s}; # vertices in spanning tree
 E1 = {}; # edges in spanning tree
 S = {Edges leaving s}
 #inv: (V1, E1) is a tree, V1 ⊆ V, E1 ⊆ E
 # (u,v) is in S iff u is in V1 and v is not
 while (V1.size() < V.size()) {
 (u,v) = remove edge with min weight from S
 Add v to V1;
 Add edge (u, v) to E1
 for each edge (v,w) from v {
 add (v,w) to S if w is not in V1
 }
 }

maintain S

invariant

Prim: Implementation
Prim(s):
 V1 = {s}; # vertices in spanning tree
 E1 = {}; # edges in spanning tree
 S = {Edges leaving s}
 #inv: (V1, E1) is a tree, V1 ⊆ V, E1 ⊆ E
 # (u,v) is in S iff u is in V1 and v is not
 while (V1.size() < V.size()) {
 (u,v) = remove edge with min weight from S
 Add v to V1;
 Add edge (u, v) to E1
 for each edge (v,w) from v {
 add (v,w) to S if w is not in V1
 }
 }

