
CSCI 241
Lecture 24

Minimum Spanning Trees; Prim’s Algorithm

Announcements
• A4: if you get “can’t find JUnit” errors when running make

buildtest, copy the lib/ directory from A3 into A4. The skeleton
didn’t have the jarfiles needed to run JUnit tests until last night.

• If your A3 didn’t pass all tests, use the .class files included in
the build folder.

• If you’re having trouble getting this to work, email me or come see me at office
hours. Don’t let A3 get in your way of completing A4.

• You may change ShortestPaths.parseGraph from
private to protected and use it in ShortestPathsTest.java.

• Friday’s quiz: DFS, BFS, Dijkstra, Minimum Spanning Trees

Goals
• Understand the definition of spanning tree

• Understand the additive and subtractive
approaches to finding spanning trees.

• Understand the definition of a minimum
spanning tree.

• Be able to run Kruskal’s algorithm and
Prim’s algorithm on a graph on paper.

Trees vs Graphs
• Trees are graphs!

• A tree is an undirected graph with exactly 1
path between all pairs of nodes.

• Implication: no cycles!

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6}

E = {(1,2), (2,5), (3,5)

(4,5), (5,6)}

Many problems are easy in trees and harder in graphs.

Trees vs Graphs
• A tree is an undirected graph with exactly 1

path between all pairs of nodes.

• Undirected tree: a tree with no root specified. 
All these graphs are the same tree:

3

2

6

5

4

1

3

2

6

5

4

1

Many problems are easy in trees and harder in graphs.

3

2

6

5

4

1

3 2

6

5

4

1

Tree Facts
• |E| = |V| - 1

• Connected

• Acyclic

3

2

6

5

4

1

3

2

6

5

4

1

3

2

6

5

4

1

3 2

6

5

4

1

Spanning Trees
• A spanning tree of a connected

undirected graph (V, E) is a
subgraph (V, E') that is a tree.

• V is the same - tree has all the nodes

• E' ⊆ E: tree has a subset of the edges

• Equivalent definitions:

• Maximal set of edges containing no cycles.

• Minimal set of edges connecting all nodes.

Examples

http://mathworld.wolfram.com/SpanningTree.html

Unless a graph is itself a tree, it has
multiple possible spanning trees.

http://mathworld.wolfram.com/SpanningTree.html

How many spanning trees
does this graph have?

A. 4
B. 8
C. 12
D. 16

3 2

5

4

1

How many spanning trees
does this graph have?

A. 4
B. 8
C. 12
D. 16

3 2

5

4

1

Finding a Spanning Tree
Subtractive method:

• Start with the whole graph

• While there exists a cycle:

• remove an edge from that cycle.

One step of the algorithm

Finding a Spanning Tree
Subtractive method:

• Start with the whole graph

• While there exists a cycle:

• remove an edge from that cycle.

One step of the algorithm

How do we know?

Finding Cycles: Use DFS!
/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static boolean dfs(Node u) {
 Stack s = (u);
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

Finding Cycles: Use DFS!
/** returns whether there is a cycle in
 * the nodes explorable from u */
public static boolean hasCycle(Node u) {
 Stack s = (u);
 while (s is not empty) {
 u = s.pop();
 if (u has been visited) {
 return true
 } else { // u has not been visited)
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

Finding a Spanning Tree
Subtractive method:

• Start with the whole graph

• n = arbitrary start node

• While hasCycle(n):

• remove an edge from that cycle.

One step of the algorithm

Finding a Spanning Tree
Additive method:

• Start with a graph containing all nodes and no edges

• While the graph is not connected:

• add an edge that connects two connected components

Connected Components
• A connected component

of G is a subgraph that is
connected.

• Graph A has one
connected component.

• How many does Graph B
have?

A. 1
B. 2
C. 3
D. 4

Graph A

Graph B

Finding a Spanning Tree
Additive method:

• Start with a graph containing all nodes and no edges

• While the graph is not connected:

• add an edge that connects two connected components

Finding a Spanning Tree
Additive method:

• Start with a graph containing all nodes and no edges

• While the graph is not connected:

• add an edge that connects two connected components

How do we know?

Finding Connected Components: 
Use DFS!

/** Visit all nodes explorable from u.
 * Pre: u is unvisited. */
public static boolean dfs(Node u) {
 Stack s = (u);
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

/** the set of vertices connected to u */
public static Set<Node> component(Node u) {
 Stack s = (u);
 Set<Node> comp = ();
 while (s is not empty) {
 u = s.pop();
 if (u has not been visited) {
 comp.add(u)
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
 return comp;
}

Finding Connected Components: 
Use DFS!

Finding a Spanning Tree
Additive method:

• Start with a graph containing all nodes and no edges

• While the component(u) != V:

• add an edge that connects two connected components

How do we know?

Minimum Spanning Trees
• If edges are weighted, we might want to

find the spanning tree with minimum total
edge weight.

1 2

22

1

1

Minimum Spanning Trees
• If edges are weighted, we might want to

find the spanning tree with minimum total
edge weight.

• MSTs are not necessarily unique:

1 2

22

1

1

1

2

1

1

1 2
1

1

Applications of MSTs
• Transport networks

• Network routing

• Social marketing

• …

Applications of MSTs
• Computer vision???

Finding a MST
• Recall: A MST has V-1 Edges

• Subtractive approach - remove all but V-1
edges

• O(|V|^2 * time to decide which edge).

• Additive approach - add V-1 edges:

• O(|V| * time to decide which edge)

Finding a MST:
Two Additive algorithms

• Kruskal’s Algorithm:

• Add the minimum-weight edge that does not form a
cycle.

• Prim’s Algorithm:

• Add the minimum-weight edge from the current
spanning tree that does not form a cycle.

Minimal set
of edges that

connect all
vertices

At each step, add an edge (that does not form
a cycle) with minimum weight

3

2

5

46
4

edge with
weight 2

3

2

5

46
4

edge with
weight 3

3

2

5

46
4

One of
the 4’s 3

2

5

46
4

The 5 3

2

5

46
4

MST using Kruskal’s algorithm

Red edges need not form tree (until end)

Kruskal Minimal set
of edges that

connect all
vertices

Start with the all the nodes and no edges, so
there is a forest of trees, each of which is a
single node (a leaf).

At each step, add an edge (that does not form a cycle)
with minimum weight

We do not look more closely at how best to implement
Kruskal’s algorithm —which data structures can be used to
get a really efficient algorithm.

Leave that for later courses, or you can look them up online
yourself.

We now investigate Prim’s algorithm

Developed in 1930 by Czech mathematician Vojtěch Jarník.
Práce Moravské Přírodovědecké Společnosti, 6, 1930,
pp. 57–63. (in Czech)

Developed in 1957 by computer scientist Robert C. Prim.
Bell System Technical Journal, 36 (1957), pp. 1389–1401

Developed about 1956 by Edsger Dijkstra and published in
in 1959. Numerische Mathematik 1, 269–271 (1959)

MST using “Prim’s algorithm”
(should be called “JPD algorithm”)

Minimal set
of edges that

connect all
vertices

At each step, add an edge (that does not form
a cycle) with minimum weight, but keep
added edge connected to the start (red) node

3

2

5

46
4

edge with
weight 3

3

2

5

46
4

edge with
weight 5

One of
the 4’s 3

2

5

46
4

The 2 3

2

5

46
4

Prim’s algorithm

3

2

5

46
4

Difference between Prim and Kruskal

Here, Prim chooses (0, 1)
Kruskal chooses (3, 4)

0

1 2

3 4

3

2

5

46
4

0

1 2

3 4

2

3

5

46
4

Here, Prim chooses (0, 2)
Kruskal chooses (3, 4)

Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t

But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

Difference between Prim and Kruskal

Here, Prim chooses (0, 1)
Kruskal chooses (3, 4)

0

1 2

3 4

3

2

5

46
4

0

1 2

3 4

2

3

5

46
4

Here, Prim chooses (0, 2)
Kruskal chooses (3, 4)

Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t

But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

Difference between Prim and Kruskal
Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t

But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

If the edge weights are all different, the Prim and
Kruskal algorithms construct the same tree.

