

CSCI 241

Lecture 24 Minimum Spanning Trees; Prim's Algorithm

Announcements

- A4: if you get "can't find JUnit" errors when running make buildtest, copy the lib/ directory from A3 into A4. The skeleton didn't have the jarfiles needed to run JUnit tests until last night.
- If your A3 didn't pass all tests, use the .class files included in the build folder.
 - If you're having trouble getting this to work, email me or come see me at office hours. Don't let A3 get in your way of completing A4.
- You may change ShortestPaths.parseGraph from private to protected and use it in ShortestPathsTest.java.
- Friday's quiz: DFS, BFS, Dijkstra, Minimum Spanning Trees

Goals

- Understand the definition of spanning tree
- Understand the additive and subtractive approaches to finding spanning trees.
- Understand the definition of a minimum spanning tree.
- Be able to run Kruskal's algorithm and Prim's algorithm on a graph on paper.

Trees vs Graphs

- Trees are graphs!
- A tree is an undirected graph with exactly 1 path between all pairs of nodes.
- Implication: no cycles!

Many problems are easy in trees and harder in graphs.

Trees vs Graphs

- A tree is an undirected graph with exactly 1 path between all pairs of nodes.
- Undirected tree: a tree with no root specified.
 All these graphs are the same tree:

Tree Facts

- |E| = |V| 1
- Connected
- Acyclic

Spanning Trees

- A spanning tree of a connected undirected graph (V, E) is a subgraph (V, E') that is a tree.
 - V is the same tree has all the nodes
 - E' ⊆ E: tree has a **subset** of the edges
- Equivalent definitions:
 - Maximal set of edges containing no cycles.
 - Minimal set of edges connecting all nodes.

Unless a graph is itself a tree, it has multiple possible spanning trees.

How many spanning trees does this graph have?

- **A.** 4
- **B.** 8
- **C.** 12
- **D.** 16

How many spanning trees does this graph have?

- **A.** 4
- **B.** 8
- **C.** 12
- **D.** 16

Subtractive method:

- Start with the whole graph
- While there exists a cycle:
 - remove an edge from that cycle.

Subtractive method:

- Start with the whole graph
- While there exists a cycle:
 - remove an edge from that cycle.

One step of the algorithm

How do we know?

Finding Cycles: Use DFS!

```
/** Visit all nodes explorable from u.
  * Pre: u is unvisited. */
public static boolean dfs(Node u) {
  Stack s = (u);
  while (s is not empty) {
    u = s.pop();
    if (u has not been visited) {
      visit u;
      for each edge (u, v) leaving u:
        s.push(v);
    }
```


Finding Cycles: Use DFS!

```
/** returns whether there is a cycle in
  * the nodes explorable from u */
public static boolean hasCycle(Node u) {
  Stack s = (u);
 while (s is not empty) {
    u = s.pop();
    if (u has been visited) {
      return true
    } else { // u has not been visited)
      visit u;
      for each edge (u, v) leaving u:
        s.push(v);
```

Subtractive method:

- Start with the whole graph
- n = arbitrary start node
- While hasCycle(n):
 - remove an edge from that cycle.

Additive method:

- Start with a graph containing **all** nodes and **no** edges
- While the graph is not connected:
 - add an edge that connects two connected components

Connected Components

- A connected component of G is a subgraph that is connected.
- Graph A has one connected component.
- How many does Graph B have?
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** 4

Additive method:

- Start with a graph containing **all** nodes and **no** edges
- While the graph is not connected:
 - add an edge that connects two connected components

Additive method: How do we know?

- Start with a graph containing all nodes and no edges
- While the graph is not connected:
 - add an edge that connects two connected components

Finding Connected Components: Use DFS!

```
/** Visit all nodes explorable from u.
  * Pre: u is unvisited. */
public static boolean dfs(Node u) {
  Stack s = (u);
 while (s is not empty) {
    u = s.pop();
    if (u has not been visited) {
      visit u;
      for each edge (u, v) leaving u:
        s.push(v);
```


Finding Connected Components: Use DFS!

/** the set of vertices connected to u */
public static Set<Node> component(Node u) {

```
Stack s = (u);
Set < Node > comp = ();
while (s is not empty) {
  u = s.pop();
  if (u has not been visited) {
    comp.add(u)
    visit u;
    for each edge (u, v) leaving u:
      s.push(v);
return comp;
```


Additive method: How do we know?

- Start with a graph containing all nodes and no edges
- While the component(u) != V:
 - add an edge that connects two connected components

Minimum Spanning Trees

 If edges are weighted, we might want to find the spanning tree with minimum total edge weight.

Minimum Spanning Trees

- If edges are weighted, we might want to find the spanning tree with minimum total edge weight.
- MSTs are not necessarily unique:

Applications of MSTs

- Transport networks
- Network routing
- Social marketing
- •

Applications of MSTs

Computer vision???

A few sample photos from a collection of Flickr images of Stonehenge.

An *image graph* for this photo collection.

Our computed skeletal graph.

A view of the complete reconstruction.

Finding a MST

- Recall: A MST has V-1 Edges
- Subtractive approach remove all but V-1 edges
 - O(|V|^2 * time to decide which edge).
- Additive approach add V-1 edges:
 - O(|V| * time to decide which edge)

Finding a MST: Two Additive algorithms

- Kruskal's Algorithm:
 - Add the minimum-weight edge that does not form a cycle.
- Prim's Algorithm:
 - Add the minimum-weight edge from the current spanning tree that does not form a cycle.

Red edges need not form tree (until end)

Kruskal

Start with the all the nodes and no edges, so there is a forest of trees, each of which is a single node (a leaf). Minimal set of edges that connect all vertices

At each step, add an edge (that does not form a cycle) with minimum weight

We do not look more closely at how best to implement Kruskal's algorithm — which data structures can be used to get a really efficient algorithm.

Leave that for later courses, or you can look them up online yourself.

We now investigate Prim's algorithm

MST using "Prim's algorithm" (should be called "JPD algorithm")

Developed in 1930 by Czech mathematician **Vojtěch Jarník**. Práce Moravské Přírodovědecké Společnosti, 6, 1930, pp. 57–63. (in Czech)

Developed in 1957 by computer scientist **Robert C. Prim**. *Bell System Technical Journal*, 36 (1957), pp. 1389–1401

Developed about 1956 by **Edsger Dijkstra** and published in in 1959. *Numerische Mathematik* 1, 269–271 (1959)

Prim's algorithm

At each step, add an edge (that does not form a cycle) with minimum weight, but keep added edge connected to the start (red) node Minimal set of edges that connect all vertices

Difference between Prim and Kruskal

Prim requires that the constructed red tree always be connected. Kruskal doesn't Minimal set of edges that connect all vertices

But: Both algorithms find a minimal spanning tree

Here, Prim chooses (0, 1) Kruskal chooses (3, 4)

Here, Prim chooses (0, 2) Kruskal chooses (3, 4)

Difference between Prim and Kruskal

Prim requires that the constructed red tree always be connected. Kruskal doesn't Minimal set of edges that connect all vertices

But: Both algorithms find a minimal spanning tree

Here, Prim chooses (0, 1) Kruskal chooses (3, 4)

Here, Prim chooses (0, 2) Kruskal chooses (3, 4)

Difference between Prim and Kruskal

Prim requires that the constructed red tree always be connected. Kruskal doesn't Minimal set of edges that connect all vertices

But: Both algorithms find a minimal spanning tree

If the edge weights are all different, the Prim and Kruskal algorithms construct the same tree.