

CSCI 241

Lecture 23 Dijkstra's Algorithm: Implementation, Proof of Correctness

Announcements

- A4: Implement Dijkstra.
 - Out this afternoon; due Sunday 12/2.
- A2: You can revise your code for half-credit back on unit test correctness points.

Goals

- Know how to implement Dijkstra efficiently.
- Know how to augment the algorithm to keep backpointers in order to reconstruct the sequence of nodes in a shortest path.
- Understand a proof that Dijkstra's algorithm is correct.

Dijkstra's Shortest Paths: Intuition

- Intuition: explore nodes kinda like BFS.
- There are three kinds of nodes:
 - Settled nodes for which we know the actual shortest path.
 - Frontier nodes that have been visited but we don't necessarily have their actual shortest path
 - Unexplored all other nodes.
- Each node n keeps track of n.d, the length of the shortest known known path from start.
- We may discover a shorter path to a frontier node than the one we've found already - if so, update n.d.

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length add it to frontier else if the path to w via f is shorter: update w's shortest path length

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: f.d set its path length S add it to frontier else if the path to w via f is shorter: update w's shortest path length

 $S = \{ \}; F = \{v\}; v.d = 0;$ Initialize Settled to empty Initialize Frontier to the start node while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);}

```
S = \{ \}; F = \{v\}; v.d = 0;
                                  Initialize Settled to empty
                                  Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                   While the frontier isn't empty:
                                     move node f with smallest d
  Remove f from F, add it to S;
                                      from F to S
  for each neighbor w of f {
    if (w not in S or F) {
       w.d = f.d + weight(f, w);
       add w to F;
    } else if (f.d+weight(f,w) < w.d) {
       w.d = f.d + weight(f,w);
   }
```

```
S = \{ \}; F = \{v\}; v.d = 0;
                                 Initialize Settled to empty
                                 Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                  While the frontier isn't empty:
                                    move node f with smallest d
  Remove f from F, add it to S;
                                      from F to S
  for each neighbor w of f {
                                 For each neighbor w of f:
                                   if we've never seen w before:
    if (w not in S or F) {
                                      set its path length
       w.d = f.d + weight(f, w);
                                      add it to frontier
       add w to F;
    } else if (f.d+weight(f,w) < w.d) {
       w.d = f.d + weight(f,w);
```

```
S = \{ \}; F = \{v\}; v.d = 0;
                                 Initialize Settled to empty
                                 Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                  While the frontier isn't empty:
                                    move node f with smallest d
  Remove f from F, add it to S;
                                     from F to S
  for each neighbor w of f {
                                 For each neighbor w of f:
                                   if we've never seen w before:
    if (w not in S or F) {
                                     set its path length
       w.d = f.d + weight(f, w);
                                     add it to frontier
       add w to F;
   } else if (f.d+weight(f,w) < w.d) {
                                   else if path to w via f is shorter:
       w.d = f.d + weight(f,w);
                                       update w's shortest path length
   }
```

What if we want to know the shortest path?

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ {

f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) {

w.d = f.d + weight(f, w);add w to F;

w.d = f.d + weight(f,w);

 At termination: for each reachable node n, n.d stores the **length** of the shortest path from v to n.

 We didn't keep track of } else if (f.d+weight(f,w) < w.d) { how to get from v to n!

What if we want to know the shortest path?

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { **if** (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { Strategy: maintain a</pre> w.d = f.d + weight(f,w); $\mathbf{w.bp} = \mathbf{f}$

Each node could store the full path, but that would be expensive to keep updated.

backpointer at each node pointing to the previous node in the shortest path.

What if we want to know the shortest path? Example

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { **if** (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { Strategy: maintain a</pre> w.d = f.d + weight(f,w); $\mathbf{w.bp} = \mathbf{f}$

backpointer at each node pointing to the previous node in the shortest path.

Implementing Dijkstra Efficiently

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);
 - w.bp = f;
 - add w to F;

```
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

. Store F in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we'll use a HashMap<Node,PathData>
- 4. Don't need to explicitly store S or Unexplored sets:
 a node is in S or F iff it is in the map.

- Dijkstra's algorithm is greedy: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.
 - Most algorithms don't work like this need to prove that it results in the global optimum.
- Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.

Proof of Correctness: Frontier Unexplored Invariant

Settled

S

f

The while loop in Dijkstra's algorithm maintains a 3part invariant:

 For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ {

Theorem f = node in F with min d value; Remove f from F, add it to S;

for each neighbor w of f {

if (w not in S or F) { w.d = f.d + weight(f, w);add w to F;

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

```
} else if (f.d+weight(f,w) < w.d) {
   w.d = f.d + weight(f,w);
```

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;

Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value; Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 }
else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
}

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

At initialization:

- 1. S is empty; trivially true.
- 2. v.d = 0, which is the shortest path.
- 3. S is empty, so no edges leave it.

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value;Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 }
else if (f.d+weight(f,w) < w.d) {

w.d =
$$f.d$$
+weight(f,w);

For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

- At each iteration:
 - 1. Theorem says f.d is the shortest path, so it can safely move to S
 - 2. Update the w.d to maintain Part 2.
 - 3. Added each neighbor is either already in F or gets moved there.