CSCI 241

Lecture 23
Dijkstra’s Algorithm:
Implementation, Proof of Correctness

Announcements

e Ad: Implement Dijkstra.

e Qut this afternoon; due Sunday 12/2.

e A2: You can revise your code for half-credit
back on unit test correctness points.

Goals

e Know how to implement Dijkstra efficiently.

e Know how to augment the algorithm to
keep backpointers in order to reconstruct
the sequence of nodes in a shortest path.

e Understand a proof that Dijkstra’s algorithm
IS correct.

Dijkstra’s Shortest Paths:
Intuition

e Intuition: explore nodes kinda like BFS.
e There are three kinds of nodes:

e Settled - nodes for which we know the actual shortest
path.

e Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

e Unexplored - all other nodes.

 Fach node n keeps track of n.d, the length of the
shortest known known path from start.

e \We may discover a shorter path to a frontier node than
the one we’ve found already - if so, update n.d.

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length
add 1t to frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

ttled
settle A’Q\\W_d = u.d + wi(u,w)
6 o0 e

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e 0 Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

settled o
é — L

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F # {}) { Initialize Frontier to the start node
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(f, w);
add w to F;
} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
}
}
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F_—/_— {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:
Remove ffromF.add itto S: move node f with smallest d
K V)

from F to S
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(f, w);
add w to F;
} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
}
h
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Initialize Settled to empty
while (F_—/_— {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:

. move node f 1th smallest d
Remove f from F, add it to S; M b
from F to S

for each neighbor wolf{ For each neighbor w of f:
if (W notin S or F) { 1f we’ve never seen w before:
: set i1ts path length
wd= f.d+ Welght(f’ W); add it to frontier

add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);

}

h
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F_-/_. {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:

Remove f from F. add it to S: move node f with smallest d

. ’ ’ from F to S
for each ne1ghb0r w of f{ For each neighbor w of f:
if (W notin S or F) { 1f we’ve never seen w before:
. : . set 1its path length
wd= f.d+ Welght(f’ w); add it to frontier

add w to F;
} else if (f.d+weight(f,w) < w.d) i
w.d = f.d+weight(f,w); N

se 1f path to w via f is shorter:
update w’s shortest path length

¥
h
h

What if we want to know
the shortest path?

S;l{ }(;FF ={{};};{ v.d=0; e At termination: for each

wilic e

f = node in F with min d value; reachable node n, n.a
Remove f from F, add it to S; stores the length of the
for each neighbor w of f { shortest path from v to n.

if (wnotin SorF) {

w.d = f.d + weight(f, w); L
add w to F; e We didn’t keep track of

} else it (f.d+weight(f,w) <w.d) { how to get from v to n!
w.d = f.d+weight(f,w);
h

¥
¥

What if we want to know
the shortest path?

S={};F={v}; v.d =0; v.bp = null;

while (F = {}) {
f = node in F with min d value; Each node could store the
Remove f from F, add it to S; full path, but that would be

for each neighbor w of 1 { :
if (w not in S or F) { expensive to keep updated.

w.d = f.d + weight(f, w);
w.bp =1;
add w to F;
} else if (f.d+weight(f,w) < w.d) { : : :
wid = f.deweight(.w) Strategy_. maintain a
w.bp =f backpointer at each node
} pointing to the previous

\ ; node in the shortest path.

What if we want to know
the shortest path? Example

S={};F={v}; v.d =0; v.bp = null;
while (F#{}) { 2 4
f = node 1in F with min d value; Q
Remove f from F, add it to S; - K 1
s O

for each neighbor w of 1 { 2

if (wnotin SorF) { 6/'

w.d = f.d + weight(f, w); shortest-paths(4)
w.bp = {;

add w to F;
} else if (f.d+weight(f,w) < w.d) { Strategy: maintain a

w.d = f.d+weight(f,w); -
wbp = f backpointer at each node

) pointing to the previous

\ ; node in the shortest path.

Implementing Dijkstra
Efficiently

S={1}:F={v}: vd=0:v.bp=null: |- Store Finamin-heap priority

while (Fz {}) { queue with d-values as
f = node in F with min d value; priorities.
Remove 1 from F, add it to S; 2. To efficiently iterate over

for each neighbor w of 1 {

if (wnotin SorF) {
w.d = f.d + weight(t, w);

neighbors, use an adjacency
list graph representation.

w.bp = f: 3. Could store w.d and w.bp in
add w to F: Node class; in A4, we’ll use a

} else if (f.d+weight(f,w) <wd){ HashMap<Node,PathData>
W-g = f-?+Weight(f»W); 4. Don’t need to explicitly store S
w.bp =

or Unexplored sets:
anodeisinSorFiffitisin
the map.

h
¥
)

Proof of Correctness

e Dijkstra’s algorithm is greedy: it makes a
sequence of locally optimal moves, which
results in the globally optimal solution.

e Most algorithms don’t work like this - need to prove
that it results in the global optimum.

e Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof of Correctness:
Settled Frontier Unexplored Inva ri ant

S F I
The while loop in Dijkstra’s algorithm maintains a 3-

part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F# {}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (W notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F: to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);

} Case 1:if visin F, then S is empty and v.d = 0, which is trivially the
! shortest distance from v to v.

¥

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another

as® L
. .
.
.
-
-
-
-
"
"
L

4

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another

frontier node g then arrive at f: -@—@:L
d.f <= d.g,

so that path cannot be shorter ' @ @ Hf

Proof of Correctness:
Invariant Maintenance

PR _ S 1. For a Settled node s, a shortest path
> B U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (w not in S or F) 1 shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(fw) < w.d) { "M S to Unexplored)

w.d = f.d+weight(f,w);
}

¥
¥

Proof of Correctness:
Invariant Maintenance

PR _ S 1. For a Settled node s, a shortest path
S - U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (W not in S or F) { shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { oM S to Unexplored)

w.d = f.d+weight(f,w);

! At initialization:
1 1. S is empty; trivially true.
) 2. v.d =0, which is the shortest path.

3. Sis empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

PR . S 1. For a Settled node s, a shortest path
S - U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (W not in S or F) { shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { oM S to Unexplored)

w.d = f.d+weight(f,w);

; At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
J 2. Update the w.d to maintain Part 2.
3. Added each neighbor is either already in F or gets moved there.

