CSCI 241

Lecture 23
Dijkstra’s Algorithm:
Implementation, Proof of Correctness
Announcements

• A4: Implement Dijkstra.
 • Out this afternoon; due Sunday 12/2.

• A2: You can revise your code for half-credit back on unit test correctness points.
Goals

• Know how to implement Dijkstra efficiently.

• Know how to augment the algorithm to keep backpointers in order to reconstruct the sequence of nodes in a shortest path.

• Understand a proof that Dijkstra’s algorithm is correct.
Dijkstra’s Shortest Paths: Intuition

• Intuition: explore nodes kinda like BFS.
• There are three kinds of nodes:
 • Settled - nodes for which we know the actual shortest path.
 • Frontier - nodes that have been visited but we don’t necessarily have their actual shortest path
 • Unexplored - all other nodes.
• Each node \(n \) keeps track of \(n.d \), the length of the shortest known known path from start.
• We may discover a shorter path to a frontier node than the one we’ve found already - if so, update \(n.d \).
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s \[\rightarrow \ldots \rightarrow f \rightarrow \ldots \rightarrow w\]

$w.d = u.d + \text{wt}(u,w)$
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

\[
\begin{align*}
\text{settled} & \quad \cdots \quad u \\
\text{w} & \quad \text{f} \\
\text{w.d} = \text{u.d} + \text{wt(u,w)} \\
\text{f.d} + \text{wt(f,w)}
\end{align*}
\]
Dijkstra's Shortest Paths: Pseudocode

\[S = \{ \}; F = \{v\}; \text{ v.d = 0; } \]

while (F \neq \{\}) {
 \[f = \text{node in F with min d value; } \]
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \}; \ F = \{v\}; \ v.d = 0; \]

\textbf{while} (\(F \neq \{\} \)) \{ \textbf{f} = \text{node in } F \text{ with min } d \text{ value;} \]
\textbf{Remove } f \text{ from } F, \text{ add it to } S; \textbf{for} \text{ each neighbor } w \text{ of } f \{ \textbf{if} (w \text{ not in } S \text{ or } F) \{ \textbf{w.d} = f.d + \text{weight}(f, w); \textbf{add } w \text{ to } F; \} \textbf{else if} (f.d+\text{weight}(f,w) \text{ < w.d}) \{ \textbf{w.d} = f.d+\text{weight}(f,w); \} \} \}

\text{Initialize Settled to empty}
\text{Initialize Frontier to the start node}

While the frontier isn’t empty:
move node \textbf{f} with smallest \textbf{d} from \textbf{F} to \textbf{S}
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \}; \quad F = \{ v \}; \quad v.d = 0; \]
while \((F \neq \{ \})\) {
 \[f = \text{node in } F \text{ with min } d \text{ value}; \]
 Remove \(f \) from \(F \), add it to \(S \);
 for each neighbor \(w \) of \(f \) {
 if (w not in \(S \) or \(F \)) {
 w.d = f.d + \text{weight}(f, w);
 add \(w \) to \(F \);
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
 \}
}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move node \(f \) with smallest \(d \) from \(F \) to \(S \)
For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \} ; \quad F = \{ v \} ; \quad v.d = 0 ; \]

\textbf{while} \ (F \neq \{ \}) \ { \}

\hspace{1em} f = \text{node in } F \text{ with min } d \text{ value;}

\hspace{1em} \text{Remove } f \text{ from } F, \text{ add it to } S ;

\hspace{1em} \textbf{for} each neighbor } w \text{ of } f \ { \}

\hspace{2em} \textbf{if} (w \text{ not in } S \text{ or } F) \ { \}

\hspace{3em} w.d = f.d + \text{weight}(f, w); \\
\hspace{3em} \text{add } w \text{ to } F ;

\hspace{2em} \textbf{else if} (f.d + \text{weight}(f, w) < w.d) \ { \}

\hspace{3em} w.d = f.d + \text{weight}(f, w); \\
\hspace{2em} \}

\textbf{} \\

Initialize Settled to empty

Initialize Frontier to the start node

While the frontier isn’t empty:

move node } f \text{ with smallest } d \text{ from } F \text{ to } S \\

For each neighbor } w \text{ of } f : \\

if we’ve never seen } w \text{ before: \\

set its path length \\

add it to frontier \\

else if path to } w \text{ via } f \text{ is shorter: \\

update } w \text{’s shortest path length

} \\

}
What if we want to know the shortest path?

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

- At termination: for each reachable node n, n.d stores the length of the shortest path from v to n.
- We didn’t keep track of how to get from v to n!
What if we want to know the shortest path?

Each node could store the full path, but that would be expensive to keep updated.

Strategy: maintain a backpointer at each node pointing to the previous node in the shortest path.
What if we want to know the shortest path? Example

Strategy: maintain a backpointer at each node pointing to the previous node in the shortest path.

```
S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ { }) {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
  if (w not in S or F) {
    w.d = f.d + weight(f, w);
    w.bp = f;
    add w to F;
  } else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f
  }
}
}
```
Implementing Dijkstra Efficiently

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ { }) {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
}
}

1. Store F in a min-heap priority queue with d-values as priorities.
2. To efficiently iterate over neighbors, use an adjacency list graph representation.
3. Could store w.d and w.bp in Node class; in A4, we’ll use a HashMap<Node,PathData>
4. Don’t need to explicitly store S or Unexplored sets: a node is in S or F iff it is in the map.
Proof of Correctness

• Dijkstra’s algorithm is **greedy**: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.

 • Most algorithms don’t work like this - need to prove that it results in the global optimum.

• Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.
Proof of Correctness: Invariant

The while loop in Dijkstra’s algorithm maintains a 3-part invariant:

1. For a Settled node \(s \), a shortest path from \(v \) to \(s \) contains only settled nodes and \(s.d \) is length of shortest \(v \rightarrow s \) path.

2. For a Frontier node \(f \), at least one \(v \rightarrow f \) path contains only settled nodes (except perhaps for \(f \)) and \(f.d \) is the length of the shortest such path.

3. All edges leaving \(S \) go to \(F \) (or: no edges from \(S \) to Unexplored)
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$

```plaintext
S = {}; F = {v}; v.d = 0;
while (F $\neq$ {}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    }
}

Case 1: if $v$ is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.
```
Proof of Correctness: Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$

$S = \{ \}; F = \{v\}; \quad v.d = 0;$
while $(F \neq \{\})$ {
 $f =$ node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 $w.d = f.d + \text{weight}(f, w);$
 add w to F;
 } else if ($f.d + \text{weight}(f, w) < w.d$) {
 $w.d = f.d + \text{weight}(f, w);$
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length >= f.d

Case 2: v is in S. Part 2 of the invariant says:

- f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$

\[
S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \\
\text{while} \quad (F \neq \{\}) \quad \{
\quad f = \text{node in } F \text{ with min } d \text{ value;} \\
\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \\
\quad \text{for each neighbor } w \text{ of } f \quad \{
\quad \quad \text{if} \quad (w \text{ not in } S \text{ or } F) \quad \{
\quad \quad \quad w.d = f.d + \text{weight}(f, w); \\
\quad \quad \quad \text{add } w \text{ to } F; \\
\quad \quad \}
\quad \quad \text{else if} \quad (f.d + \text{weight}(f, w) < w.d) \quad \{
\quad \quad \quad w.d = f.d + \text{weight}(f, w); \\
\quad \quad \}
\quad \}
\}
\]

Case 2: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:

- $d.f \leq d.g,$
- so that path cannot be shorter.
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)

\[S = \{ \} \]; \[F = \{ v \} \]; \[v.d = 0 \];

\[\text{while } (F \neq \{ \}) \{ \]
\[\quad f = \text{node in F with min d value;} \]
\[\quad \text{Remove f from F, add it to S;} \]
\[\quad \text{for each neighbor w of f} \{ \]
\[\quad \quad \text{if (w not in S or F)} \{ \]
\[\quad \quad \quad w.d = f.d + \text{weight}(f, w); \]
\[\quad \quad \quad \text{add w to F;} \]
\[\quad \quad \} \text{ else if (f.d+weight(f,w) < w.d)} \{ \]
\[\quad \quad \quad w.d = f.d+\text{weight}(f,w); \]
\[\quad \}
\[\}
\]
Proof of Correctness: Invariant Maintenance

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:
1. S is empty; trivially true.
2. v.d = 0, which is the shortest path.
3. S is empty, so no edges leave it.

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.
3. All edges leaving S go to F (or: no edges from S to Unexplored)
Proof of Correctness: Invariant Maintenance

S = {}; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:
1. Theorem says f.d is the shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.
3. All edges leaving S go to F (or: no edges from S to Unexplored).

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.
3. All edges leaving S go to F (or: no edges from S to Unexplored).