
CSCI 241
Lecture 23

Dijkstra’s Algorithm:

Implementation, Proof of Correctness

Announcements
• A4: Implement Dijkstra.

• Out this afternoon; due Sunday 12/2.

• A2: You can revise your code for half-credit
back on unit test correctness points.

Goals
• Know how to implement Dijkstra efficiently.

• Know how to augment the algorithm to
keep backpointers in order to reconstruct
the sequence of nodes in a shortest path.

• Understand a proof that Dijkstra’s algorithm
is correct.

Dĳkstra’s Shortest Paths:
Intuition

• Intuition: explore nodes kinda like BFS.

• There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest
path.

• Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

• Unexplored - all other nodes.

• Each node n keeps track of n.d, the length of the
shortest known known path from start.

• We may discover a shorter path to a frontier node than
the one we’ve found already - if so, update n.d.

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

settled

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)

Dĳkstra’s Shortest Paths:
Pseudocode

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node

Dĳkstra’s Shortest Paths:
Pseudocode

While the frontier isn’t empty:
 move node f with smallest d
 from F to S

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Dĳkstra’s Shortest Paths:
Pseudocode

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move node f with smallest d
 from F to S
 For each neighbor w of f:

 if we’ve never seen w before:
 set its path length
 add it to frontier

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Dĳkstra’s Shortest Paths:
Pseudocode

For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier

 else if path to w via f is shorter:
 update w’s shortest path length

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move node f with smallest d
 from F to S

What if we want to know
the shortest path?

• At termination: for each
reachable node n, n.d
stores the length of the
shortest path from v to n.

• We didn’t keep track of
how to get from v to n!

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

What if we want to know
the shortest path?

Each node could store the
full path, but that would be
expensive to keep updated.

Strategy: maintain a
backpointer at each node
pointing to the previous
node in the shortest path.

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

What if we want to know
the shortest path? Example

Strategy: maintain a
backpointer at each node
pointing to the previous
node in the shortest path.

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

3

2

0

4

1

2 4

4 1

3
3

shortest-paths(4)

Implementing Dĳkstra
Efficiently

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store F in a min-heap priority
queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we’ll use a
HashMap<Node,PathData>

4. Don’t need to explicitly store S
or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a

sequence of locally optimal moves, which
results in the globally optimal solution.

• Most algorithms don’t work like this - need to prove
that it results in the global optimum.

• Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof of Correctness:
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier
F

Settled
S

Unexplored

f

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f: fv g

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

fv g

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Update the w.d to maintain Part 2.

3. Added each neighbor is either already in F or gets moved there.

