
CSCI 241
Lecture 23


Dijkstra’s Algorithm:

Implementation, Proof of Correctness



Announcements
• A4: Implement Dijkstra. 


• Out this afternoon; due Sunday 12/2.


• A2: You can revise your code for half-credit 
back on unit test correctness points.



Goals
• Know how to implement Dijkstra efficiently.


• Know how to augment the algorithm to 
keep backpointers in order to reconstruct 
the sequence of nodes in a shortest path.


• Understand a proof that Dijkstra’s algorithm 
is correct.



Dĳkstra’s Shortest Paths: 
Intuition

• Intuition: explore nodes kinda like BFS.


• There are three kinds of nodes:


• Settled - nodes for which we know the actual shortest 
path.


• Frontier - nodes that have been visited but we don’t 
necessarily have their actual shortest path


• Unexplored - all other nodes.


• Each node n keeps track of n.d, the length of the 
shortest known known path from start.


• We may discover a shorter path to a frontier node than 
the one we’ve found already - if so, update n.d.



Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length
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Dĳkstra’s Shortest Paths: 
Pseudocode

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Initialize Settled to empty
Initialize Frontier to the start node
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  if we’ve never seen w before:
    set its path length
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What if we want to know 
the shortest path?

• At termination: for each 
reachable node n, n.d 
stores the length of the 
shortest path from v to n.


• We didn’t keep track of 
how to get from v to n!

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}



What if we want to know 
the shortest path?

Each node could store the 
full path, but that would be 
expensive to keep updated.


Strategy: maintain a 
backpointer at each node 
pointing to the previous 
node in the shortest path.

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}



What if we want to know 
the shortest path? Example

Strategy: maintain a 
backpointer at each node 
pointing to the previous 
node in the shortest path.

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}
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Implementing Dĳkstra 
Efficiently

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}

1. Store F in a min-heap priority 
queue with d-values as 
priorities.


2. To efficiently iterate over 
neighbors, use an adjacency 
list graph representation.


3. Could store w.d and w.bp in 
Node class; in A4, we’ll use a 
HashMap<Node,PathData>


4. Don’t need to explicitly store S 
or Unexplored sets: 
  a node is in S or F iff it is in 
  the map.



Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a 

sequence of locally optimal moves, which 
results in the globally optimal solution.


• Most algorithms don’t work like this - need to prove 
that it results in the global optimum.


• Specifically: It is not obvious that there 
cannot still be a shorter path to the Frontier 
node with smallest d-value.



Proof of Correctness: 
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:


1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only 
settled nodes (except perhaps for f) and f.d is the length of the 
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv
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F

Settled 
S
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f



Proof of Correctness: 
Theorem

Theorem: For a node f in the Frontier 
with minimum d value (over all nodes in 
the Frontier), f.d is the shortest-path 
distance from v to f. 
Proof: Show that any other path from v 
to if has length >= f.d

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the 
shortest distance from v to v.
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• f.d is the length of the shortest path from v to f containing all 

settled nodes except f, and f.d is the length of such a path.
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Any other v-f path must either be longer or go through another 
frontier node g then arrive at f: fv g
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fv g



Proof of Correctness: 
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
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perhaps for f) and f.d is the length of the 
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At initialization: 

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.



Proof of Correctness: 
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
path contains only settled nodes (except 
perhaps for f) and f.d is the length of the 
shortest such path


3. All edges leaving S go to F (or: no edges 
from S to Unexplored)

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
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At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Update the w.d to maintain Part 2.

3. Added each neighbor is either already in F or gets moved there.


