Whatcom
Community College

Q u:
2.0m
Western Washinglo
Un lver"h

Lecture 22
Dijkstra’s Single-Source Shortest Paths Algorithm



Announcements

e Nick has office hours today 2-4 CF 163.
e hours.txt should contain a single integer. No more, no less.

* Nontrivial code sections (such as rebalance and rotations)
should have comments!

e Test that your code compiles and runs on the command line:
® git clone your repo url && cd your repo nhame
® make test?2
® make testl # yes, you have to run test2 before testl

® make test3



Goals

e Know what a weighted graph is.

 Understand the intuition behind Dijkstra’s
shortest paths algorithm.

 Be able to execute Dijkstra’s algorithm
manually on a graph.



Weighted Graphs

* Like a normal graph, but edges have weights.

 Formally: a graph (V,E) with an accompanying weight
function w: E -> R

* may be directed or undirected.

* Informally: label edges with their weights

* Representation: Q

e adjacency list - store weight of (u,v) with v the node in u’s list

e adjacency matrix - store weight in matrix entry for (u,v)



Paths in Weighted Graphs

* The length (or weight) of a path in a weighted
graph is the sum of the edge weights along
that path.

e ABCD: What’s the
length of the shortest
path from 3 to 67
A 7

B. 8
C. 9
D. 1

0



Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o




Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2



Dijkstra’s Shortest Paths:
History

e \When Dijkstra designed the algorithm in 1956 (at
age 26), most people were programming in
assembly language.

e Fortran was the only high-level language, and it
wasn’t quite finished at the time.

e Big-O analysis had not been thought of yet. In
his paper, Dijkstra says, “my solution is preferred
to another one ... “the amount of work to be
done seems considerably less.”



Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest paths

e Example: if the shortest path from u to w goes
through v, then

e the part of that path from u to v is the shortest
path from u to v.

e |f there were some better path u..v, that would
also be part of a better way to get from u to w.



Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest
paths

e Conseguence: a candidate shortest path
from start node s to some node v’s neighbor
w is the shortest path from to v + the edge
weight from v to w.

shortest path u..v = v.d

"0 0




Dijkstra’s Shortest Paths:
Intuition

e Intuition: explore nodes kinda like BFS.
e There are three kinds of nodes:

e Settled - nodes for which we know the actual shortest
path.

e Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

e Unexplored - all other nodes.

 Fach node n keeps track of n.d, the length of the
shortest known known path from start.

e \We may discover a shorter path to a frontier node than
the one we’ve found already - if so, update n.d.



Dijkstra’s Shortest Paths:

Cartoon
settled frontier unexplored

During:

S

- <:E§;ii;:/4l;;ii;i£:> <:::> <:5i§é;>
unrea nodes




Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length
add 1t to frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length



Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length




Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

ttled
settle A’Q\\W_d = u.d + wi(u,w)
6 o0 e




Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e 0 Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

settled o
é — L




Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set:

Frontier set:
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {}

Frontier set: {4}
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 4
1f we’ve never seen w before: .
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {}
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {0}
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: O
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {}
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1}
shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1, 2}
shortest-paths(4)



Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1)

Frontier set: {2}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 1
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)



Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0, 1)

Frontier set: {2, 3}
shortest-paths(4)



Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, O, 1, 2}

Frontier set: {3}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 2
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)



Dijkstra’s Shortest Paths:

Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

Settled set: {4, O, 1, 2}

Frontier set: {3}

move the node f with smallest d from F to S
For each neighbor w of £

. . f: 2
1f we’ve never seen w before:

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’s shortest path length

2.

+Wt(23)<3d
/<8

shortest-paths(4)



Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 3
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)



Let’s Dijkstra

e Half get the algorithm, half get the graphs.

 Run the algorithm on each graph:

e (first) 5-node graph: start at node S

e (second) Other graph: start at node D



Unanswered Questions

e Does this always work??

e How do you get the path, not just its
length?

e How do you implement it efficiently?

e \What’s the runtime?



ometimes it’s not about finding the shortest path.

(o | s
Bay S »

o ? by

Lombard Sireed,

we= BN
& )i L T
- ¢ a1l

' 013
Cnssy Field

—

: NG PR S8 B |3 > [P
L _J‘ "’,- -\j > B 4 y QAT .

s i1 Ray ¥ - 7 \ A:'il'_
RN e R '

" '\\\) p. A 4 2 B

] 2 . 3 = ' A

"’ & = R o
{ A v~ 8] . “® .5

- A 1
& s
<
S5 Y Ana S i
L + A \
Maboa ot
' R
o ® A
o fl_h'.l"x,:l'_‘ 11 v
£ P s T — 2O
N 7 P NG s - 3 J
LR < om b 2 =
~ s
- g N« Golden Gate Paiky ==
i - . " ““
' » Lncaln Way
-3
’ =
Nou=zga ot \
- - ‘\
& =
@ » _“ = -2
o % < ;: -’
- ® e =
L ; P
= CeMiago 3 '-‘ >
waval St = 4
> . ) J
b
o3 Lighter
J ?.“ .
e P §/ Wnaia Lasin
Ucean Jve T
.
- F g % Lo
../ £
T — 1] ra2 Pol
. "T 7 “r
. ki f
> A John Mclaren Fa B
< SUu A

L Like Meiced Park Mere &/ N ? ;
b4 iciahta 200, Pt D R\

Have a great hanksgiving!



