
CSCI 241
Lecture 16

Some Java Stuff:

Inheritance, Generics, Exceptions

Announcements
• Lab 2 is graded, grades are on Canvas.

• A1 is taking a while. Aiming for early next
week.

• A2 slip days: the code I pulled at the
deadline is what will be graded unless you
told me you took a slip day.

To submit your work late, you must push your changes via git (as
usual) then send me an email stating that you have submitted the
assignment late. The timestamp of the email, which must be sent after
your final changes are pushed to git, will be used as the submission time.

Goals

• Understand inheritance in Java.

• Know how to use and implement simple
Generic classes.

• Know how to catch and throw exceptions.

• Be ready for the midterm exam.

Inheritance in Java
• A class can extend another class and inherit all of

its public and protected methods.

• If a class does not extend any other class, it
extends Object by default.

• Object has some methods:

• https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

• equals(), toString(), hashCode(), …

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

public class A
public class A {

}

 // pretty exciting, eh?

A Very Brief Intro to
Generics

Photo credit: Andrew Kennedy

Before Generics
interface Collection {
 /** Return true iff the collection contains ob */
 boolean contains(Object ob);
 /** Add ob to the collection; return true iff
 * the collection is changed. */
 boolean add(Object ob);
 /** Remove ob from the collection; return true iff
 * the collection is changed. */
 boolean remove(Object ob);
 ...
}

Can contain anything that extends Object (any class at all!)

• But not primitive types: int, double, float, boolean, …

Before Generics
interface Collection {
 /** Return true iff the collection contains ob */
 boolean contains(Object ob);
 /** Add ob to the collection; return true iff
 * the collection is changed. */
 boolean add(Object ob);
 /** Remove ob from the collection; return true iff
 * the collection is changed. */
 boolean remove(Object ob);
 ...
}

Can contain anything that extends Object (any class at all)

• But not primitive types: int, double, float, boolean, …

The Problem
Collection c = ...
c.add(“Hello”)
c.add(“World”);
...
for (Object ob : c) {
 String s = (String) ob;
 // do things with s
}

String[] a = ...
a[0]= (“Hello”)
a[1]= (“World”);
...
for (String s : a) {
 System.out.println(s);
}

Notice: Arrays don’t have this problem!

The Solution: Generics
Object[] oa= ... // array of Objects
String[] sa= ... // array of Strings
ArrayList<Object> oA= ... // ArrayList of Objects
ArrayList<String> oA= ... // ArrayList of Strings

interface Collection<T> {
 /** Return true iff the collection contains x */
 boolean contains(T x);

 /** Add x to the collection; return true iff
 * the collection is changed. */
 boolean add(T x);

 /** Remove x from the collection; return true iff
 * the collection is changed. */
 boolean remove(T x);
 ...
}

Now the Collection interface is implemented like this:

The Solution: Generics
interface Collection<T> {
 /** Return true iff the collection contains x */
 boolean contains(T x);

 /** Add x to the collection; return true iff
 * the collection is changed. */
 boolean add(T x);

 /** Remove x from the collection; return true iff
 * the collection is changed. */
 boolean remove(T x);
 ...
}

The Collection interface is now implemented like this:

Key idea: I don’t need to know what T is to implement these!

The Solution: Generics

Collection<String> c= ...
c.add(“Hello”) /* Okay */
c.add(1979); /* Illegal: compile error! */

Key idea: I don’t need to know what T is to implement these!

Generally speaking,

 Collection<String>
behaves like the parameterized type

 Collection<T>

where all occurrences of T have been replaced by String.

The Solution: Generics

Collection<int> c = ...

The bummer: T must extend Object - no primitive types.

Can’t do:

Have to use:

 Collection<Integer>

Java often seamlessly converts int to Integer and back.

Integer x = 5; // works
int x = new Integer(5); // works

“Autoboxing/unboxing”

LinkedList<T>
• We often use an inner class to store Node

objects of trees, graphs, lists, etc.

• It’s defined inside the LinkedList class, and
only used within the class.

The Comparable Interface

• We can compare apples to oranges!

class Orange implements Comparable;
class Apple implements Comparable;
Orange o = new Orange();
Apple a = new Apple();
a.compareTo(o);

interface Comparable<T> {
 int compareTo(T o);
}

The Comparable Interface

• We can compare apples to oranges!

interface Comparable {
 public int compareTo(Object o)
}

interface Comparable<T> {
 int compareTo(T o);
}

The Comparable Interface

class Orange implements Comparable<Orange>;
class Apple implements Comparable<Apple>;
Orange o = new Orange();
Apple a = new Apple();
a.compareTo(o);

interface Comparable<T> {
 int compareTo(T o);
}

Won’t compile because Apple doesn’t have:

compareTo(Orange o)

It only has:

compareTo(Apple o)

Fancier Generics

SortableCollection<String> c= ...
c.sort();

What if I care a little bit what T is?

requires T to be Comparable!

Fancier Generics

SortableCollection<String> c= ...
c.sort();

What if I care a little bit what T is?

requires T to be Comparable<T>!

interface SortableCollection<T extends Comparable<T>>
{
 ...
}

Two Slides on Exceptions: 1

• Exceptions make your code crash at
runtime.

• You can catch them using a try/catch block:

try {
 // some code that might cause an error
} catch (TypeOfExceptionToCatch e) {
 // respond to the error in some sensible way
 // e points to the Exception that was thrown
}

Two Slides on Exceptions: 1

• Exceptions make your code crash at
runtime.

• You can catch them using a try/catch block:

try {
 b = 10/0;
} catch (ArithmeticException e) {
 b = 0; // math works like this, right?

}

Two Slides on Exceptions: 2

if (bad_thing_happened) {
 throw new BadThingHappenedException();
}

• Sometimes your code should crash at
runtime.

• e.g., a precondition is violated

• You can force an exception - simply create
an Exception and throw it:

Two Slides on Exceptions: 2

if (index > a.size) {
 throw new ArrayIndexOutOfBoundsException();
}

• Sometimes your code should crash at
runtime.

• e.g., a precondition is violated

• You can force an exception - simply create
an Exception and throw it:

• Sometimes your code should crash at
runtime.

• e.g., a precondition is violated

• You can force an exception - simply create
an Exception and throw it:

Two Slides on Exceptions: 2

 // I haven’t written this method yet
 throw new UnsupportedOperationException();

