.mainjava.com

CSCI 24

Lecture 15
Heaps

Announcements

e Office hours today:

* Nick: Today 2-4 in CF163

e Me: Today 2:30-4 in CF461; Friday’s OH canceled.

e Quiz 4 released on Gradescope.

e Will be on Canvas soon.

. . . &
* No quiz this Friday! %\K/"

About the Exam

* Friday, November 2nd in class.

e One double-sided 8.5x11” sheet of hand-written
notes.

* Quizzes are the most efficient way to study.

* |f you have a problem accessing your graded quiz, contact me.

e | made you (me) a study guide:
https://qgithub.com/wehrwein-teaching/csci241 18f studyqguide/wiki

o At the bottom: crowdsourced list of pointers to practice
problems and ABCD questions. Please contribute as you study!

https://github.com/wehrwein-teaching/csci241_18f_studyguide/wiki

Goals

» Understand how to implement a Priority

Queue using a heap

- Understand the storage mechanism for heaps.

» Be prepared to implement a heap's add, peek,

and poll operations.

Priority Queue: heap implementation

A heap Is a concrete data structure that can be used to
implement a Priority Queue

e Better runtime complexity than either list implementation:
o peek()is O(1)
e poll() is O(log n)
e add() is O(log n)

* Not to be confused with heap memory, where the Java
virtual machine allocates space for objects — different
usage of the word heap.

A heap Is a special binary tree
with two additional properties.

A heap Is a special binary tree.

1. Heap Order Invariant:
—ach element >= Its parent.

A heap Is a special binary tree.

2. Complete: no holes!
* All levels except the last are full.
 Nodes In last level are as far left as possible.

Full:

Full; /21\ R

22| |38 |55

10

14

N

19 35

/

20 | — as far left as possible

Heap operations

interface PriorityQueue {

boolean add(Object e); // insert e

Object peek(); // return min element

Object poll(); // remove/return min element
void clear();

boolean contains(Object e);

boolean remove(Object e);

int size();

Iterator iterator();

add(e)

Algorithm:
* Add e in the wrong place
* While e Is Iin the wrong place
* move (“bubble”) e towards the right place

35

35

A

add(e)

20 (19

22| (38| |55 |10

35

35

add(e)

Algorithm:

 Add e in the wrong place (the leftmost empty leaf)
* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap invariant is maintained!

What's the runtime”

* O(number of swap/bubble operations)
= O(height of tree)

* A complete tree must be balanced (can you prove this?)
=>height is O(log n)

* Maximum number of swaps is O(log n)

add(e)

Algorithm:

 Add e in the wrong place (the leftmost empty leaf)
* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap property is maintained!

Implementing Heaps

public class HeapNode {
private int value;
private HeapNode left;
private HeapNode right;

h
public class Heap {

HeapNode root;

Implementing Heaps

public class HeapNope {
private int value;
private HeapNope left;
private HeapNope right;

A heap Is a special binary tree.

2. Complete: no holes!

Full:

Full:

Full:

A

/ N\

4 R

22

38| |95

10

14

N\

19 35

/

20

«— as far left as possible

Numbering Nodes

Level-order traversal:

A
321‘ 48

ZANVAN

22| (38| |55 |10

o | 14

N

S

19 6|35

/

7 8 9 10

20

11

2. Complete: no holes!

Numbering Nodes
R’

321@ % 5|19 6|35

22 \ 38| |95 |10 20
7 8 9 10 11

node k's parent Is
node k's children are nodes anad

Numbering Nodes
R’

321@ z% 5|19 6|35

22 \ 38| |95 |10 20
7 8 9 10 11

node k’'s parent is (k — 1)/2
node k’s children are nodes and

Numbering Nodes
3 ZJA?S 5 192/146\35
AN

22 \ 38| |95 |10 20
7 8 9 10 11

node k’'s parent is (k — 1)/2
node k’s children are nodes 2k + 1 and 2k + 2

Implementing Heaps

public class Heap {
private int[] heap;
private 1nt size;

}

01 2 3 4 56 7 8 9 10 11 12 13 14 15

4 106 14121 8 |19/35|22/38|55|10|20

implicit Tree Structure

2. Complete: no holes!

04
. |6 , |14
3 21 5 (19 6|35
2\ 38| [55]| [10
8 9 10 11
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1o (1421 8 119/35(22(38|55/10|20

Heap It real, part 2.

Here's a heap, stored in an array:

15767 10]

Which of the following is the correct array

after execution of add(4)”
Assume the array has space for the additional element

(i.e., doesn’t need to grow).
R

1

A.[15467107)
15767104

3.
C.[14576710° ~ N g
D.[15764710] e

11

Heap operations

interface PriorityQueue {

boolean add(Object e); // insert e

Object peek(); // return min element

Object poll(); // remove/return min element
void clear();

boolean contains(Object e);

boolean remove(Object e);

int size();

Iterator iterator();

poll()

Algorithm:

* Remove and save the smallest thing

* Fill the resulting hole with the wrong thing

* Bubble the wrong thing down to the right place

35

14

/\

22\ 38| |95 |10 20 |19

22 \ 38| |95 |10 20 |19

Remove and save the smallest (root) element

P

E 38

53

10

14

20

35

19

Move the last element to replace the root

A A

ﬂ 38| |55

Bubble the root value down

35

AN NS

22\ 38| |95 |10 20

Bubble the root value down, swapping with the smaller child

21 \ 8 14 35
_ggJ 38| 55| [10| |20

Bubble the root value down, swapping with the smaller child

21@ 8 19 35
_ggJ 38| 55| [10| |20

Bubble the root value down, swapping with the smaller child

Fq

22|

poll()

A

38

/\

38

59

10

14

RN

19 35

2

4

Return the smallest element.

poll()

Algorithm:

* Remove and save the root (first) element

* Move the last element to the first spot.

* While it is greater than either of its children:
e Swap it with its smaller child.

Heap operations

interface PriorityQueue {
boolean add(Object e); // insert e O(log n)

Object peek(); // return min O(1)
Object poll(); // remove/return minO(log n)
void clear(); O(1l)
boolean contains(Object e); O(n)
boolean remove(Object e); O(n)
int size(); O(1)
Iterator iterator(); O(1)

Detalls

Grow the storage array when the heap exceeds its
size (could use ArrayList)

Implementation of bubbling routines
Implementation of contains() and removel()
Min vs max heaps

Efficiently find, remove, and change priority

Heapsort

public static void heapsort(int[] b) {
Heap h = new Heap();
// put everything into a heap - n*log(n
for (int k = 0; k < b.length; k k+1)
h.add(b[k]);

A ~—

// pull everything out in order - n*log(n)
for (1int k = 0; k < b.length; k k+1) {
b[k] = h.poll();

Heapsort

public static void heapsort(int[] b) {
Heap h = new Heap();
// put everything into a heap - n*log(n
for (int k = 0; k < b.length; k k+1)
h.add(b[k]);

A ~—

// pull everything out in order - n*log(n)
for (1int k = 0; k < b.length; k k+1) {
b[k] = h.poll();

\ Worst-case runtime: O(n log n) |

Heapsort

public static void heapsort(int[] b) {
Heap h = new Heap();
// put everything into a heap - n*log(n
for (int k = 0; k < b.length; k k+1)
h.add(b[k]);

A ~—

// pull everything out in order - n*log(n)
for (1int k = 0; k < b.length; k k+1) {
b[k] = h.poll();
} Possible to implement in-place!
} Worst-case runtime: O(n log n) |

Recap - what we know now:

* MoOw

* MNOW

The two special properties that make a heap.

ow to store a complete binary tree in an array.
ow to add an element to a heap.

to remove the smallest element from a heap.

to write a worst-case O(n log n) sort.

