
CSCI 241
Lecture 14

Heaps and the Priority Queue ADT

www.mainjava.comwww.heapson.com

• Many people are losing style points on A1.

• Please review style guidelines 
in the syllabus and on the 
assignment writeup.

• A 300-line main() method is not good style.

• Copy/pasting code to print an array every time you
need to do it is not good style.

• Inconsistent indentation is not good style.

•

Announcements

while(++k>j)A[i++]=B[k];
might make you feel clever, but it is not good style.

break it into smaller methods

conciseness is only good in the service of clarity

there are tools that will fix this for you if you can’t manage it

write a helper method, call it when needed

Goals
• Understand the purpose and interface of the

Priority Queue ADT.

• Know the definition and properties of a heap.

• Understand how to implement a Priority
Queue using a heap

• Be prepared to implement heap insertion and
removal.

Preliminaries - Interfaces
Java has a thing called an interface.

It’s like a class, but doesn’t have method
bodies. It only exists so other classes can
implement it.

public interface Set

Specifies public method names, specs,
parameters, return values, etc.

http://www.docjar.com/html/api/java/util/Set.java.html

Preliminaries - Comparable
The Comparable interface has one method:

From A2: you can call w.compareTo(node.word)

because String implements Comparable.

Returns:
a negative integer if this < o
zero if this is equal to o
a positive integer if this is > o.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Preliminaries - Comparable
The Comparable interface has one method:

If you can compare items, you can sort them!

They have a well-defined ordering.

Priority Queue
Like a Queue, but:
• items are Comparable
• removal (called poll()) returns item with the

“highest priority”
• we define “highest priority” as “smallest” element

according to compareTo()
• if multiple “smallest” elements are equal

(compareTo returns 0), we can remove either.

interface PriorityQueue {
 boolean add(Object e); // insert e
 Object peek(); // return min element
 Object poll(); // remove/return min element
 void clear();
 boolean contains(Object e);
 boolean remove(Object e);
 int size();
 Iterator iterator();
}

Implement Priority Queue
using LinkedList

An unsorted list:
• add() - new element goes at front of list - O()
• poll() - search the list, remove smallest - O()
• peek() - search the list, return smallest - O()

A sorted list:
• add() - insert item in sorted position - O()
• poll() - min element is at front - O()
• peek() - min element is at front - O()

Implement Priority Queue
using LinkedList

An unsorted list:
• add() - new element goes at front of list - O(1)
• poll() - search the list, remove smallest - O(n)
• peek() - search the list, return smallest - O(n)

A sorted list:
• add() - insert item in sorted position - O(n)
• poll() - min element is at front - O(1)
• peek() - min element is at front - O(1)

Question to ponder:

What would be the runtime of add, peek, and poll if
you implement a Priority Queue using a BST?

What about an AVL tree?

Priority Queue: heap implementation
• A heap is a concrete data structure that can be used to

implement a Priority Queue

• Better runtime complexity than either list implementation:
• peek() is O(1)
• poll() is O(log n)
• add() is O(log n)

• Not to be confused with heap memory, where the Java
virtual machine allocates space for objects – different
usage of the word heap.

A heap is a special binary tree
with two additional properties.

A heap is a special binary tree.
1. Heap Order Invariant:  

Each element >= its parent.
4

146

21 198 35

22 5538 10 20 !!

!!

A heap is a special binary tree.
2. Complete: no holes!

• All levels except the last are full.
• Nodes in last level are as far left as possible.

4

146

21 198 35

22 5538 10 20

Full:

Full:

Full:

as far left as possible

Heap it real.Which of the following are valid heaps?

Which of these is a valid heap?

Heap it real.Which of the following are valid heaps?

Which of these is a valid heap?
11 is < its parent level 1 is not full

(5 needs a right child)
leaves are not as

far left as possible heap!

interface PriorityQueue {
 boolean add(Object e); // insert e
 Object peek(); // return min element
 Object poll(); // remove/return min element
 void clear();
 boolean contains(Object e);
 boolean remove(Object e);
 int size();
 Iterator iterator();
}

Heap operations

