CSCI 241

Lecture 13
Interface vs Implementation
Set, Priority Queue
Intro to Heaps

Announcements

e Quiz 3 is graded, available on Gradescope.
(Grades are also in Canvas.

e Dr. Hearne is putting together teams for for the
ACM programming contest coming up on
November 11th
e He is hoping to form multiple teams, including
some consisting of lower division students (you!)
e Email or talk to Dr. Hearne if you are interested
and/or want to learn more.

https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fmathcs.pugetsound.edu%2Facm-icpc%2F&data=02%7C01%7CScott.Wehrwein%40wwu.edu%7Ceac99edea7414b37c83508d639317ca0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636759282051048140&sdata=JdCTWsafRi3w%2BCsPuWjNCBiYjKM6dSeA5pru9netsWU%3D&reserved=0

Goals

- Understand how public and private members In

Java reflect the separation between interface
and implementation.

« Understand the purpose and interface of the Set
ADT, and how AVL trees implement it.

» Understand the purpose and interface of the
Priority Queue ADT.

Know the definition and properties of a heap.

A2: Updating Heights

. Ignore height field until implementing rebalance.

. Heights change when the tree structure
changes: insertions and rotations.

. Strategy - insertion: update n’s height using its
childrens’ heights before calling rebalance.

. Strategy - rotations: only x and y can change
height. Update them after rotation is complete.

10

11

15

AVL Insertion

insert(Node n, int v):
//..(other case, irrelevant here)
else: // v > n.value

if n has right:
insert(n.right, v)
else:
// attach new node w/ value
// v to n.right

rebalance(n);

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node
rebalance(f)
rebalance(c)
rebalance(a)

10

11

AVL Insertion

insert(Node n, int v):

:Egh

16

//..(other case, irrelevant here)
else: // v > n.value
if n has right:

insert(n.right, v)

else:
// attach new node w/ value
// v to n.right

rebalance(n);

0 insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node
rebalance(f)
rebalance(c)
rebalance(a)

10

11

AVL Insertion

insert(Node n, int v):
//..(other case, irrelevant here)
else: // v > n.value

15

1

16

if n has right:
insert(n.right, v)
else:

// attach new node w/ wvalue

// v to n.right

rebalance(n);

0

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)

rebalance(f)
rebalance(c)
rebalance(a)

=>attach new node

<«—update f’s height

10

11

AVL Insertion

insert(Node n, int v):

15

1

16

//..(other case, irrelevant here)
else: // v > n.value
if n has right:

insert(n.right, v)

else:
// attach new node w/ value
// v to n.right

rebalance(n);

0 insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node _
<«—update f’s height
rebalance(f) ot e ekt
rebalance(c) Hpaate &= el

rebalance(a)

AVL Insertion

insert(Node n, int v):
//..(other case, irrelevant here)
else: // v > n.value
if n has right:
insert(n.right, v)
else:
// attach new node w/ value

=—h

15 |1

// v to n.right
1110 |16 Orebalance(n);

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)

=>attach new node _
<«—update f’s height

rebalance(f) _
<«—update c’s height

rebalance(¢) yotation happens)
rebalance(a)

AVL Insertion

insert(Node n, int v):
//..(other case, irrelevant here)
else: // v > n.value
if n has right:
insert(n.right, v)
else:
// attach new node w/ value

=—h

15 |1

// v to n.right
1110 |16 Orebalance(n);

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node _
<«—update f’s height
rebalance(f) ot e ekt
rebalance(c) Hpaate &5 el

— te a’s height
rebalance(a) update a's heig

AVL

ins
/
e
al 10 |3
~—
b|8|2 fl 15 |1

di-11 €90 ¢11)0 16 |0,

9|40

Why shouldn’t we use the
recursive height() method
from lab3 to update
heights”?

Insertion

ert(Node n, int v):

/..(other case, irrelevant here)

lse: // v > n.value

if n has right:

insert(n.right, v)

else:
// attach new node w/ value
// v to n.right

ebalance(n) ;

insert(a, 16)
=>insert(c, 16)
=>insert(f, 16)
=>attach new node _
<«—update f’s height
rebalance(f) ot e ekt
rebalance(c)* oA eEel

<«——update a’s height
rebalance(a) 1P 9

A2: Updating Heights

. Strategy - insertion: update n’s height using its

childrens’ heights before calling rebalance.

. Strategy - rotations: only x and y can change

height. Update them after rotation is complete.

Recap: Interface vs Implementation

e Abstract data structures are interfaces

* they specify only the interface to a class
(method names and specifications)

* not its implementation
(method bodies, fields, ...)

* Abstract data structures can have multiple possible
implementations.

Interface vs Implementation:
N Java

A class is a “blueprint” for an object.

It contains members including

* fields (variables)

 methods (functions)

Fields and methods can be public or private

Private members can’t be seen outside the class.
Public members can be seen outside the class.

Public members provide the class’s interface.
Private members are used to implement the interface.

Interface vs Implementation:
N Java

Public members provide the class’s interface.
Private members are used to implement the interface.

Important consequence:

It a public method has a specification, it has to implement
that specitication precisely and completely.

Just because you never encounter an edge case doesn't
mean someone else using your class won't.

Interface vs Implementation:

It a public
that specit

N Java

Public members provide the class’s interface.
Private members are used to implement the interface.

Important consequence:

method has a specification, it must implement

ication precisely and completely.

Just because you never encounter an edge case doesn't

mean someone else using your class won't.

\

(e.g., me grading your code using unit tests)

Interface vs Implementation:
A pertinent example.

/** partition A around the pivot A[pivIndex].
* return the pivot's new index.
* precondition: start <= pivIndex < end
* postcondition: A[start..i] <= A[1] <= A[i+l..end]
* where i is the return value */
public int partition(int[] A, int start, int end, int pivIndex) {

Even if your quickSort always calls this with
pivIndex = end-1

partition is public and must implement the spec exactly!
It needs to work if pivindex is any value where
start <= pivIndex < end (the precondition says so!)

Interface vs Implementation:
Javadoc Comments

There’s a big difference between

Appears in documentation that tells
/*® this comment */ people how to use your class!

and

Does not appear elsewhere - “merely”
/* this comment */ helpful to someone reading your code.

Scanner.nextInt() documentation Scanner.nextint() source code

Interface vs Implementation:
Tips for Assignments (and life)

* Public method specifications, names, return values, and
oarameters should never be changed.

* All public methods must implement its specitication
completely, even it your use case doesn’t require it.

* You can do basically whatever you want with private
methods, as long as you stick to good coding style.

* |t's still a good idea to write a specification and test
private methods.

* Use them to make your code easier to read (and write).

* In my A1 solution, | wrote a helper to find the pivot:

/* put the median of A[start], A[middle], A[end-1] at the start *
private void medOfThree(int[] A, int start, int end) {

Interface vs Implementation

What the operations do

A

An abstract data type specifies only interface,
not implementation

v

How they are accomplished

Interface vs Implementation

What the operations do

A

An abstract data type specifies only interface,
not implementation

v

How they are accomplished

Abstract data types can have multiple possible
implementations.

Abstract Data Types

- Interface List defines an “abstract data type”
- It has public methods: add, get, remove, ...
» Various classes implement List:

ArrayList LinkedList
array chained nodes
O(n) O(n)

O(n) O(1)

O(1) O(1)

O(1) O(n)

O(1) O(1)

O(1) O(1)

Stacks and Queues are
restricted L ists

Stack Arraylist LinkedList

array chained Node objects
push(val) O(n) O(1)
peek() O(1) O(1)

pop() O(n) O(1)

Stacks and Queues are
restricted L ists

Queue Arraylist LinkedList
array chained Node objects
enQ(val) O(1) O(1)
peek() O(1) O(1)

deQ() O(n) O(1)

The Set ADT

* A Set maintains a collection of unique things.

» Java has this ADT built in as an intertace:
java.util.Set
e Some methods from java.util.Set:
* boolean add(Object ob)
* boolean contains(Object ob)
* boolean remove(Object ob)

The Set ADT

Methods from java.util.Set:
* boolean add(Object ob)
* boolean contains(Object ob)
* boolean remove(Object ob)

20ssible Implementations:
e array
* |inked list
e BST
 AVL Tree

The Set ADT

Methods from java.util.Set:
* boolean add(Object ob)
* boolean contains(Object ob)
* boolean remove(Object ob)

20ssible Implementations:

© array Array operations:

e linked list * iIndexing/assignment (A[i] = v)
* length (A.length

. BST gth (A.length)

. How can we implement
AVL Iree Set’s add method?

A Set maintains a

The Set AD] collection of unique
things.

Methods from java.util.Set:
e boolean add(Object ob)
e boolean contains(Object ob)

e boolean remove(Object ob)

In small groups:

1. Write English descriptions of
how to implement contains
and remove uUsing an array.

Array operations:
* indexing/assignment (A[i] = v)
* length (A.length)

AVL operations:
2. Do the same, but using the » search(Object ob)

operations provided by an AVL - insert(Object ob)
Tree. » remove(Object ob)

Collection Interface

<<interface>>
Collection

<<interface=>> <<interface=>> <<interface=>
Set List . Queue

<<interface>> : . : F
So rte dSet ArrayList LinkedList PriorityQueue
LinkedHashSet g |nterface>) .
NawgableSet > |mp|ements

— extends

Collection Interface

<<interface>>
Collection

<<interface>> <<interface>> <<interface:>>
Set Queue

| I
----------- » Implements
‘ —— extends

PriorityQueue

Our next two topics:
* Priority Queues
* Hashing, HashSets, HashMaps

Queue vs Priority Queue

\

\
L |y A
LS
| |
s 4 f ; N =Wwww.mainiava.

add (enqueue): add (enqueue):
inserts an item into the queue inserts an item into the queue

remove (dequeue): remove (poll):
removes the first item to be remove the highest-priority
inserted (FIFO) item from the queue

Uses for Priority Queues

Surface simplification [Garland and Heckbert 1997
Graph searching: Dijkstra's algorithm, Prim's algorithm
Statistics: maintain largest M values in a sequence
Graphics and simulation: "next time of contact" for

collidi
Al Pa

ng bodies

h Planning: A* search (e.g., Map directions)

Operating systems: load balancing, interrupt handling
Discrete optimization: bin packing, scheduling

