CSCI 241
Lecture 11
Balanced Binary Search Trees
Announcements
Goals

• Be prepared to implement rotations in BSTs

• Be prepared to implement AVL rebalancing.
Tree Rotations

Steps in left rotation (move y up to x’s position):
1. Transfer β
2. Transfer the parent
3. Transfer x itself

- $x.R$ gets $y.L$
- $y.L.p$ gets x
- $y.p$ gets $x.p$
- $p.[L/R]$ gets y

- $y.L$ gets x
- $x.p$ gets y

Right rotation

Left rotation
Warm-up

Steps in left rotation (move y up to x’s position):
1. Transfer β
2. Transfer the parent
3. Transfer x itself

- $x.R$ gets $y.L$
- $y.L.p$ gets x
- $y.p$ gets $x.p$
- $p.[L/R]$ gets y
- $y.L$ gets x
- $x.p$ gets y

Perform a **left** rotation on the root of this tree:
Can we improve balance?

Balance Factor\((n) \) = height(\(n\text{.right} \)) - height(\(n\text{.left} \))

For convenience: define height(null) = -1
Can we improve balance?

Balance Factor(n) = height(n.right) - height(n.left)
Can we improve balance?

Balance Factor(n) = height(n.right) - height(n.left)
Can we improve balance?

Balance Factor(n) = height(n.right) - height(left)
Can we improve balance?

Balance Factor(n) = $\text{height}(n\text{.right}) - \text{height}(n\text{.left})$
Can we improve balance?

Balance Factor(n) = $\text{height}(n.\text{right}) - \text{height}(\text{left})$
Balance Factor

Balance Factor $b(n) = \text{height}(n.\text{right}) - \text{height}(n.\text{left})$

ABCD: What’s the largest absolute balance factor of any node in each tree?
AVL Trees

Balance Factor \(b(n) \) = height(n.right) - height(left)

- Devised by Adelson-Velsky and Landis
- An AVL tree is a Binary Search Tree in which the following property holds:

AVL property: \(-1 \leq b(n) \leq 1\) for all nodes n.
Balance Factor in AVL Trees

AVL property: $-1 \leq b(n) \leq 1$ for all nodes n.

Every subtree in an AVL tree looks like one of these three trees:

(a) Balance factor: 1

(b) Balance factor: 0

(c) Balance factor: -1
ABCD: Which of these is/are not AVL trees?
A. U
B. W
C. V and W
D. U and W
Which of these is/are not AVL trees?
A. U
B. W
C. V and W
D. U and W

Heights in blue.
ABCD: Which of these is/are not AVL trees?
A. U
B. W
C. V and W
D. U and W

Heights in blue.
Balance factors in green.
AVL Trees: Insertion

- An AVL tree is a Binary Search Tree in which the following property holds:

AVL property: \(-1 \leq b(n) \leq 1\) for all nodes \(n\).

To insert into an AVL tree:
1. Do a normal BST insertion
2. Fix any violations of the AVL property using rotations.

\[h \]
\[h \]
\[h \]

(a) Balance factor: 1
(b) Balance factor: 0
(c) Balance factor: -1
AVL Trees: Insertion

AVL property: -1 <= \(b(n) \) <= 1 for all nodes \(n \).

To insert into an AVL tree:
1. Do a normal BST insertion
2. Fix any violations of the AVL property using rotations.

(a) Balance factor: 1
(b) Balance factor: 0
(c) Balance factor: -1
Refresher: BST Insertion

/* insert a node with value v into the
 * tree rooted at n. pre: n is not null. */
insert(Node n, int v):
 if n.value == v: return // (duplicate)
 if v < n.value:
 if n has left:
 insert(n.left, v)
 else:
 // attach new node w/ value v to n.left
 else: // v > n.value
 if n has right:
 insert(n.right, v)
 else:
 // attach new node w/ value v to n.right
AVL Insertion

/* insert a node with value v into the
* tree rooted at n. pre: n is not null. */
insert(Node n, int v):
 if n.value == v: return // (duplicate)
 if v < n.value:
 if n has left:
 insert(n.left, v)
 else:
 // attach new node w/ value v to n.left
 else: // v > n.value
 if n has right:
 insert(n.right, v)
 else:
 // attach new node w/ value v to n.right
 rebalance(n);