Lecture 8
Introduction to Trees



Analyze ALL the Sorts!

InsertionSort SelectionSort MergeSort QuickSort RadixSort

Best-case

Average-
case

Worst-case




Announcements

e Nick’s office hours: Tuesdays 1-3pm, CF 167

e Fvents next week:

e Monday, Oct. 15 — Tech Talk: Alaska Airlines — 5 pm in CF 110

e Tuesday, Oct. 16 — Peer Lecture Series: CS Success Workshop — 4 pm
in CF 420

e Wednesday, Oct. 17 — Tech Talk: Integra Group — 5 pm in CF 125
e Saturday & Sunday, Oct. 20 & 21 — Fall Game Jam! — 10 am in CF 105

 Regular club meetings:

e Al Club - Tuesdays 6pm in PH 228 (talk to Sakari!)
e Game Design Club - Mondays 6pm in CF 105 (talk to Kale!)
e QOthers - see https://cse.wwu.edu/cs/cs-clubs



https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-alaska-airlines&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298517355&sdata=VuOQGdr%2BuFOGDQkzH52iojvZqaBMZj6CADHz63aH%2FPk%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-cs-success-workshop&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298527359&sdata=xsSeF9XvFh6aDQRVvciIvSGH2Vhi3tJiD%2FTWpgfhOsU%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-integra-group-0&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298537367&sdata=Hz%2F%2FcVqMfl0oXq%2B0%2FonTaiovdR6A0RxAgteifdL%2B96w%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ffall-game-jam-0&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298547371&sdata=vUQD%2FAaBy6ZHPUMX8xnoCQTeKPw2pivaPbFZQaWDFQg%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https://sites.google.com/view/wwuaiaclub&data=02%7C01%7C%7C084cd26030d544be8ee308d62d72041d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636746365038541910&sdata=xzAURaV5/BFBxkUgUKCb48grKWhSPD5yvU8qdnFBPIQ=&reserved=0
http://wwugamedesign.club/
https://cse.wwu.edu/cs/cs-clubs

Goals:

e Understand the definition of a tree.

e Know the basic terminology associated with
trees:

* Root, child, parent, leaf, height, depth, subtree,
descendent, ancestor

e Be able to write a tree class and some simple
recursive processing methods.



Linked List

public class ListNode {
int value;
ListNode next;



Linked List

public class List {
int value;
List next;

}

The node is the list.
Next points to the tail of the list (also a list!)



Binary Iree

public class Tree {
int value;
Tree left;

Tree right;
}

The node is the tree.



Tree - Definition

Tree: like a linked list, but: /®\@ /@)\@
e Each node may have zero or more
successors (children) (8) O (8

e Each node has exactly one
predecessor (parent) except the
root, which has none

e All nodes are reachable from root /@
Binary tree: A tree, but: @) 6)
e Each can have at most two 5

children (left child, right child) @

Not a tree List-like tree

General tree Binary tree



Tree Terminology

M is the root of this tree

G is the root of the left subtree of M @
B, H, J, N, S are leaves (have no children)

N is the left child of P e @
S is the right child of P

P is the parent of N

M and G are ancestors of D ° Q °

P N, S are descendants of W

J is at depth 2 (length of path from root) e a o e

The subtree rooted at W has height (length
of longest path to a leaf) of 2

A collection of several trees is called a ?



public class BinaryTreeNode {
private int wvalue;
private BinaryTreeNode parent; (null if no left child)
private BinaryTreeNode left; // left subtree
private BinaryTreeNode right; // right subtree

(null if no right child)

public class GeneralTreeNode ({
private int wvalue;
private GeneralTreeNode parent;
private List<GeneralTreeNode> children;



Why do we need these?



Why do we need these?

to represent hierarchical structure.
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Why do we need these?

to represent hierarchical structure.
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Why do we need these?

to represent hierarchical structure.

BVDS > Annotations > Dataterm > easy_output.txt

DAVIS > Annotations_old > Evaluation >

FBMS > ImageSets > README.md 7 grid.py

SegTrackv? > JPEGImages > Segmentations > homography

timelapse > README.md model.model

Results > my_results

output.txt
paper !
test |
train.txt

train.txt.model
train.txt.range
train.txt.scale
train.txt.scale.out
train.txt.scale.png



Why do we need these?

to represent hierarchical structure.

Syntax Trees:
((2+3) + (5+7))
e |n textual representation,
parentheses show

hierarchical structure

* |n tree representation,
hierarchy is explicit in the
tree’s structure @

Also used for natural languages and programming languages!



Why do we need these?

to implement various ADTs efficiently.

TreeSet, TreeMap

Height of a balanced binary tree is O(log n)

Consequence: Many operations (find, insert, ...) can be
done in O(log n) in carefully-designed trees.

N
o e



Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:
e value
* aleft binary tree

* aright binary tree



Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:

e value

* aleft binary tree /\/ \
* aright binary tree / \/\




Thinking about trees
recursively

e A binary tree is |
e Empty, or
* Three things:
e value

* aleft binary tree

* aright binary tree




Operations on trees

often follow naturally from the definition of a tree:

A binary tree is Find v in a binary tree:
e Empty, or (base case - not found!)

* Three things:

e value (base case - is this v?)
e a left binary tree (recursive call - is v in left?)

* aright binary tree (recursive call - is v in right?)



Operations on trees

often follow naturally from the definition of a tree:

A binary tree is
e Empty, or
* Three things:
e value
* aleft binary tree

* aright binary tree

Find v In a binary tree:
boolean findVal (Tree t, int v):

(base case - not found!)
if t == null.:
return false

(base case - is this v?)

if t.value == v: return true

(recursive call - is v in left?)
return findVal (t.left)

| | £findVal (t.right)
(recursive call - is v In right?)



Tree Traversals

Print (or otherwise process) every node in a tree:

* A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null.:
return

* Three things:

e value (print this node’s value)
System.out.println(t.value)

e aleft binary tree (recursive call - print left subtree)
printTree (t.left)

* aright binary tree (recursive call - print left subtree)
printTree (t.right)



Tree Traversals

Print (or otherwise process) every node in a tree:

A

oL

@

Print all nodes in a binary tree:
boolean printTree (Tree t):

(base case - nothing to print)
if t == null.:
return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree (t.left)

(recursive call - print left subtree)
printTree (t.right)



Tree Traversals

Print (or otherwise process) every node in a tree:

T\:/@)\ Print all nodes in a binary tree:

boolean printTree (Tree t):

D @ (base case - nothing to print)
if £ == null.:
@ return

ABCD: .T IS a reference tc? thg (print this node’s value)
node with value 5. What is printed System.out.println(t.value)

- ?
by the call printTree(T)* (recursive call - print left subtree)

g\. ? j g 57) 2 printTree (t.left)
C. 784925 (recursive call - print left subtree)

printTree (t.right)

D. 54782



Tree Traversals

*Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversails:

in-order traversal: post-order traversal:
1. Process left subtree 1. Process left subtree
2. Process root 2. Process right subtree

3. Process right subtree 3. Process root



Why do we need these?

to represent hierarchical structure.

Quadtrees in graphics and simulation:
https://www.youtube.com/watch?v=fuexOsL Of|0



https://www.youtube.com/watch?v=fuexOsLOfl0

Practice Exercise

* Write the values printed by a:

* pre-order ﬁ)\

INn-order a @
4

e post-order

traversal of this tree.



Terminology - Self-Quiz

root

subtree @

leaf

child @ @

parent

a t

dre](s:i:noc:ant Q Q °
depth

ONOBONO



