Lecture 8
Introduction to Trees

Analyze ALL the Sorts!

InsertionSort SelectionSort MergeSort QuickSort RadixSort

Best-case

Average-
case

Worst-case

Announcements

e Nick’s office hours: Tuesdays 1-3pm, CF 167

e Fvents next week:

e Monday, Oct. 15 — Tech Talk: Alaska Airlines — 5 pm in CF 110

e Tuesday, Oct. 16 — Peer Lecture Series: CS Success Workshop — 4 pm
in CF 420

e Wednesday, Oct. 17 — Tech Talk: Integra Group — 5 pm in CF 125
e Saturday & Sunday, Oct. 20 & 21 — Fall Game Jam! — 10 am in CF 105

 Regular club meetings:

e Al Club - Tuesdays 6pm in PH 228 (talk to Sakari!)
e Game Design Club - Mondays 6pm in CF 105 (talk to Kale!)
e QOthers - see https://cse.wwu.edu/cs/cs-clubs

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-alaska-airlines&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298517355&sdata=VuOQGdr%2BuFOGDQkzH52iojvZqaBMZj6CADHz63aH%2FPk%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-cs-success-workshop&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298527359&sdata=xsSeF9XvFh6aDQRVvciIvSGH2Vhi3tJiD%2FTWpgfhOsU%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ftech-talk-integra-group-0&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298537367&sdata=Hz%2F%2FcVqMfl0oXq%2B0%2FonTaiovdR6A0RxAgteifdL%2B96w%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Ffall-game-jam-0&data=02%7C01%7C%7C37b0eeee7023475945d008d62fa851b0%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636748797298547371&sdata=vUQD%2FAaBy6ZHPUMX8xnoCQTeKPw2pivaPbFZQaWDFQg%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https://sites.google.com/view/wwuaiaclub&data=02%7C01%7C%7C084cd26030d544be8ee308d62d72041d%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636746365038541910&sdata=xzAURaV5/BFBxkUgUKCb48grKWhSPD5yvU8qdnFBPIQ=&reserved=0
http://wwugamedesign.club/
https://cse.wwu.edu/cs/cs-clubs

Goals:

e Understand the definition of a tree.

e Know the basic terminology associated with
trees:

* Root, child, parent, leaf, height, depth, subtree,
descendent, ancestor

e Be able to write a tree class and some simple
recursive processing methods.

Linked List

public class ListNode {
int value;
ListNode next;

Linked List

public class List {
int value;
List next;

}

The node is the list.
Next points to the tail of the list (also a list!)

Binary Iree

public class Tree {
int value;
Tree left;

Tree right;
}

The node is the tree.

Tree - Definition

Tree: like a linked list, but: /®\@ /@)\@
e Each node may have zero or more
successors (children) (8) O (8

e Each node has exactly one
predecessor (parent) except the
root, which has none

e All nodes are reachable from root /@
Binary tree: A tree, but: @) 6)
e Each can have at most two 5

children (left child, right child) @

Not a tree List-like tree

General tree Binary tree

Tree Terminology

M is the root of this tree

G is the root of the left subtree of M @
B, H, J, N, S are leaves (have no children)

N is the left child of P e @
S is the right child of P

P is the parent of N

M and G are ancestors of D ° Q °

P N, S are descendants of W

J is at depth 2 (length of path from root) e a o e

The subtree rooted at W has height (length
of longest path to a leaf) of 2

A collection of several trees is called a ?

public class BinaryTreeNode {
private int wvalue;
private BinaryTreeNode parent; (null if no left child)
private BinaryTreeNode left; // left subtree
private BinaryTreeNode right; // right subtree

(null if no right child)

public class GeneralTreeNode ({
private int wvalue;
private GeneralTreeNode parent;
private List<GeneralTreeNode> children;

Why do we need these?

Why do we need these?

to represent hierarchical structure.

Why do we need these?

to represent hierarchical structure.

s 2019 NCAA DIVISION | MEN'S BASKETBALL CHAMPIONSHIP BRACKET

Epand Fownd Megenal Pupassl N Mtars

FINAL FOUR
SAN ANTON ©

NATTONAL
CHAMFIONSKIP

Why do we need these?

to represent hierarchical structure.

\‘ Assizzant Attorney
‘{‘,/'_\ kbl BOARD OF TRUSTEES Genersl
- . - Knena Higgws
WESTERN —
WASHINCTON UNIVERSITY P! Dunn
Organizational Structure Government
Redations Facdhty Senats
Dir Becca Kerns- ard 'Fm ; | "d;n:\::ﬁ‘
Schenk Committees Bron: Carbajal
| e
Vice Presidem Vice President for Associots Vice College of Ewsmoss
: : Presidet for ond Ecoromics
tor Business and Enroliment and Assodiated de & Duan Scol You
Finenciel Affairs Student Services IET T N i
Richard an Den HW Fairaeven College
Rogsarch & Graduate - ofirterdeciplinary
Scheo! Studics
Cammurications Associnte Asststont Dean of Studanta’ WWU Founcatien — Vice Provast/Uacn Jeon Jek Hemng
ond Masceting Vice President Vice President Assoceted Students Goutarn Filay
Cir. fou' Cocke Bricn Sulfivor Kunle Cikaty Dean Ted Pratt Adzancament Colkge of %w and
: - - | Services | Urdergrazuas - Performing Ans
Web Commun caton Public Safety’ Campuz Recration Studert OQutreach Chief Ooevating Officor Bdusation Coan Kit Spicor
lezhnalcgies | |~ Unéveesity Folice Sarws serviess - Mark drovak Viee Provast
LV AMfax Bronzema Oir. Darin Razmussen Ov Adam Leanard fesoz DeavOr Stam Hudey Collsge of
Koreo Colkna Danor Relstlors anc SEESIEN, by S
Small Basiness Envirnmorta Courseling Cener Specal Everws riomaton Dear
Dovelopment Center — (— Health anc Safety v Shan Hobwzon Office of Swdens Life Seniar Qiroctor Tachnology and CIO Ste FoYenhemst
Oic CJ Selz O Sup Sufwan 5 p— Lasars Doan — Mark Jagey Vieo Provost
revention snd Michadl Siedice -
Washingtor Campus Faclitios Dolcpment Welress Sarvices ' Dwveloprwent and Tl Pl ol
Compacr - and Caprzl Budger O Elve Munes Student Engagament/ Leacership Giving Squed Cprrtunity & l— Socikl Sciences
Dic. Jann'for Hine Di. Univ. Archikact VU Bl thes Aszoc. View Presicent Employmen- Diversity Doan
Rick Borre” Student Headth Cte. Asszeliw Dasn Tim Szyrmancwsld ¥ico Provest 25q.4 Pareoes Ménoez
Community Ow Erdy Gitsor Enic Nasander SuB Guantor-schiesinoes
Relatices - Facilities Stratag c Iritiatives B Cclege of Science
Dir 0 s Bl,!!‘“- - h‘dw. el WMW MH’H’J:M‘Y’ Sc Divactoe Fatended Fdll"‘.h‘l —_— ad E‘V"-’“
el o Furrnsn Residences ——+—— Rescurcws for Studets Moy Velm e P Doen Brad fobrson
Dir. Leorand Jones D Bavid Bourremer Eorl Gibbxas
Human Ressu-ces Aumai, Amnual Giving - Waodring Calege
- Asst \TP dor IR Asststant Intercalleginte and Advancemert Internatianal Stucies - of Cducation
Crapmd ‘Mol Lan Vice President Athlatics Cormmanications — Oi- Vaki Harbls | D Hewan-er Widk o
Ckva Coovon Athlatic D, Steve Card Asst. \fica Prasicet
Budget Cffica - . Debocah Dalldees Spoeil Academic Véestern Ubrernies
L Lindle Teatsr Senca Aid Bucget and P-og-ars, Centers T Dean Yok Goeenoerg
‘ — Administraticn VAU Alumni and Instizutes
. {dms:‘loxu Di. Lnce Bedkren Associstion
n Cezar = . -
g P View site nfarmetion
New Student Dev. Services
Services/Famiy Ov Tmo Loudon
Outraach
. B) Dk Rorna Sitgs AS Bookstore
K ’u-...-_.r».'vi ad) Jvwam S Lovemitw v ’,g'-mc‘mn &'10’2018

adwivhin'sely i e bar Froddecs pr Bxives ona' Reeudd / fer

Why do we need these?

to represent hierarchical structure.

BVDS > Annotations > Dataterm > easy_output.txt

DAVIS > Annotations_old > Evaluation >

FBMS > ImageSets > README.md 7 grid.py

SegTrackv? > JPEGImages > Segmentations > homography

timelapse > README.md model.model

Results > my_results

output.txt
paper !
test |
train.txt

train.txt.model
train.txt.range
train.txt.scale
train.txt.scale.out
train.txt.scale.png

Why do we need these?

to represent hierarchical structure.

Syntax Trees:
((2+3) + (5+7))
e |n textual representation,
parentheses show

hierarchical structure

* |n tree representation,
hierarchy is explicit in the
tree’s structure @

Also used for natural languages and programming languages!

Why do we need these?

to implement various ADTs efficiently.

TreeSet, TreeMap

Height of a balanced binary tree is O(log n)

Consequence: Many operations (find, insert, ...) can be
done in O(log n) in carefully-designed trees.

N
o e

Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:
e value
* aleft binary tree

* aright binary tree

Thinking about trees
recursively

* A binary tree is /@\@
e Empty, or bd \®

* Three things:

e value

* aleft binary tree /\/ \
* aright binary tree / \/\

Thinking about trees
recursively

e A binary tree is |
e Empty, or
* Three things:
e value

* aleft binary tree

* aright binary tree

Operations on trees

often follow naturally from the definition of a tree:

A binary tree is Find v in a binary tree:
e Empty, or (base case - not found!)

* Three things:

e value (base case - is this v?)
e a left binary tree (recursive call - is v in left?)

* aright binary tree (recursive call - is v in right?)

Operations on trees

often follow naturally from the definition of a tree:

A binary tree is
e Empty, or
* Three things:
e value
* aleft binary tree

* aright binary tree

Find v In a binary tree:
boolean findVal (Tree t, int v):

(base case - not found!)
if t == null.:
return false

(base case - is this v?)

if t.value == v: return true

(recursive call - is v in left?)
return findVal (t.left)

| | £findVal (t.right)
(recursive call - is v In right?)

Tree Traversals

Print (or otherwise process) every node in a tree:

* A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null.:
return

* Three things:

e value (print this node’s value)
System.out.println(t.value)

e aleft binary tree (recursive call - print left subtree)
printTree (t.left)

* aright binary tree (recursive call - print left subtree)
printTree (t.right)

Tree Traversals

Print (or otherwise process) every node in a tree:

A

oL

@

Print all nodes in a binary tree:
boolean printTree (Tree t):

(base case - nothing to print)
if t == null.:
return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree (t.left)

(recursive call - print left subtree)
printTree (t.right)

Tree Traversals

Print (or otherwise process) every node in a tree:

T\:/@)\ Print all nodes in a binary tree:

boolean printTree (Tree t):

D @ (base case - nothing to print)
if £ == null.:
@ return

ABCD: .T IS a reference tc? thg (print this node’s value)
node with value 5. What is printed System.out.println(t.value)

- ?
by the call printTree(T)* (recursive call - print left subtree)

g\. ? j g 57) 2 printTree (t.left)
C. 784925 (recursive call - print left subtree)

printTree (t.right)

D. 54782

Tree Traversals

*Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversails:

in-order traversal: post-order traversal:
1. Process left subtree 1. Process left subtree
2. Process root 2. Process right subtree

3. Process right subtree 3. Process root

Why do we need these?

to represent hierarchical structure.

Quadtrees in graphics and simulation:
https://www.youtube.com/watch?v=fuexOsL Of|0

https://www.youtube.com/watch?v=fuexOsLOfl0

Practice Exercise

* Write the values printed by a:

* pre-order ﬁ)\

INn-order a @
4

e post-order

traversal of this tree.

Terminology - Self-Quiz

root

subtree @

leaf

child @ @

parent

a t

dre](s:i:noc:ant Q Q °
depth

ONOBONO

