CSCI 241

Lecture 7
Comparison Sorts
Radix Sort

Announcements

e Don’t leave A1/Lab 2 to the last minute.
Radix sort Is a bit tricky.

Goals:

e Understand the distinction between
comparison and non-comparison sorts.

e Know the runtime and other tradeoffs
between O(n log n) comparison sorts and
radix sort.

e Be prepared to implement radix sort.

MergeSort is O(n logz(n))

e Side note: the base is just a constant factor!

= 0.30102999566 log, (n)

e Consequence: loga(n) is O(logw(n)) for any
constants a, b.

e We usually just write O(log n)

Can we do any better?

e Fact: O(n log n) is provably optimal®.

“for comparison sorts, which operate by
comparing pairs of elements.

WHATIELTOLD YOU

3 |
f A
y 2 :

*If your values have a constant (O(1)) number of digits

Comparison sorts operate by comparing pairs of
elements.

How do you sort without
comparing elements?

Suppose | gave you 10 sticky notes with the digits O through 9.
What algorithm would you use to sort them?

What’s the runtime?

What if there are duplicates?

Refresher:
Stacks and Queues

(LIFO) (FIFO)
Stack s;
Queue q; ABCD: What is printed?
A. 11223344
for i in 1..5: B.14233241
s.add (i) // push C.41322314
g.add(i) // enqueue D.44332211

for i in 1..5:
print s.remove() // pop
print g.remove() // dequeue

Stability

Objects can be sorted on keys - different objects
may have the same value.

e e.g., sorting on 10’s place only

A stable sort maintains the order of distinct
elements with the same key.

LSD Radix Sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max digits = max # digits in any element of A
for d in 0..max digits:
do a stable sort of A on the dth least
significant digit

// A 1s now sorted(!)

LSD Radix Sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max digits = max # digits in any element of A
for d in 0..max digits:
do a stable sort of A on the dth least
significant digit

// A 1s now sorted(!)

Don’t believe me? https://visualgo.net/en/sorting

https://visualgo.net/en/sorting

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort (A):
create 10 buckets (queues) for each digit (0 to 9)
for each digit (least- to most-significant):
for each element in A:
move element into i1its bucket based on digit
for each bucket, starting from smallest digit
while bucket 1s non-empty
restore element to list

LSD Intuition: sort on most-significant digit last; if tied,
yield to the next most significant digit, and so on.

Only works because stability preserves orderings from less
significant digits (previously sorted).

Exercise: Radix sort this

Hint:

- 7,19,21,11, 14, 54, 1, 8]

07,19, 21,11, 14, 54, 01, 08]

LSDRadixSort (A):
create 10 buckets (queues) for each digit (0 to 9)

for each digit (least- to most-significant):

for each element in A:

move element into its bucket based on digit

for each bucket, starting from smallest digit

while bucket 1is non-empty

restore element to list

Exercise: Radix sort this

07,19, 61, 11, 14, 54, 01, O8]

0 1 2 3 4 5 6 V4 8 9
Buckets
on 1’s place:
Sorted on
1’s place:
0 1 2 3 4 5 6 V4 8 9
Buckets

on 10’s place:

Sorted on
10’s place:

Exercise: Radix sort this

07,19, 61, 11, 14, 54, 01, O8]

0] 1 2 3 4 5 6 / 8 9
Buckets 01
on 1’s place: 11 o4
6 14 07 08 19
Sortedon oy 4 14 54 07 08 19
1’s place:
0 1 2 3 4 5 6 7 8 9
Buckets 08 19
on 10’s place: 07 14
01 11 54 61
Sorted on
01 07 08 11 14 19 54 61

10’s place:

LSD Radix Sort
using queue buckets

What’s the runtime?

LSDRadixSort (A):
create 10 buckets (queues) for each digit (0 to 9)
for each digit (least- to most-significant):
for each element in A:
move element into i1its bucket based on digit
for each bucket, starting from smallest digit
while bucket 1s non-empty
restore element to list n = a_length

d = max # digits?

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort (A):
create 10 buckets (queues) for each digit (0 to 9)
for each digit (least- to most-significant):
for each element in A:
move element into i1its bucket based on digit
for each bucket, starting from smallest digit
while bucket 1s non-empty
restore element to list n = a_length

d = max # digits?

ABCD: What’s the runtime?
A. O(n) B.Odn) C.O(dlogn) D.O(n?

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort (A):
create 10 buckets (queues) for each digit (0 to 9)
for each digit (least- to most-significant):
for each element in A:
move element into i1its bucket based on digit
for each bucket, starting from smallest digit
while bucket 1s non-empty

restore element to list n = a_Iength
d = max # digits?

ABCD: What’s the runtime?
A. O(n) B.Odn) C.O(dlogn) D.O(n?

When would we prefer comparison
sorts O(n log n) over radix sort O(dn)?

When is O(dn) better than O(n log n)?

Whenisn*d < n*log n?

/d < Iogn\

log(maxVal) log(# values)

Some other considerations:
* |s Radix sort in-place? Might prefer QuickSort.

e “O(n)” often hides large constants.

e Radix sort requires “digits”; comparison sorts work on anything pairwise
comparable.

LSD Radix Sort
using counting sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max digits = max # digits in any element of A
for d in 0..max digits:
counting sort A on the dth least
significant digit

// A 1s now sorted(!)

Counting Sort

Formalizes what you did with the 1-9 sticky notes:
e Handles duplicates

e Stable sort

Intuition:

http://www.cs.miami.edu/home/burt/learning/Csc517.091/
workbook/countingsort.html

Pseudocode in CLRS (and reproduced on the next slide).

http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html
http://www.cs.miami.edu/home/burt/learning/Csc517.091/workbook/countingsort.html

COUNTING-SORT(A, B, k)

1

N — O O 00 3 A L A W N

Counting Sort - from CLRS

Notes:
e Kkis the base or radix (10 in our examples)
e B is filled with the sorted values from A.

let C[0..k]| be a new array * C maintains counts for each bucket.
fori = Otok The final loop must go back-to-front to
Cli] =0 guarantee stability.
for j = 1to A.length
ClAlj]] = ClA[j]] + 1
// C[i] now contains the number of elements equal to i.
fori = 1tok
Cli] =Cli|+ C[i —1]
// C|i] now contains the number of elements less than or equal to i.
for ; = A.length downto 1
B(C[A[j]]] = Alj]
ClAlj]] = ClA[j]] -1

