
CSCI 241
Lecture 4:

Recursion

Announcements
• First programming assignment (A1) out

today(ish)

Today
• Runtime of InsertionSort and SelectionSort

• Recursion: how to execute it

• Recursion: how to think about it

ABCD: What’s the best and worst-case asymptotic runtime
complexity of selectionSort?

Best Worst

A O(n) O(n)
B O(n2) O(n)
C O(n) O(n2)
D O(n2) O(n2)

selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] > A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

ABCD: What’s the best and worst-case asymptotic runtime
complexity of insertionSort?

Best Worst

A O(n) O(n)
B O(n2) O(n)
C O(n) O(n2)
D O(n2) O(n2)

Why is this best-case runtime interesting?

insertionSort1(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

insertionSort2(A):
 i = 0;
 while i < A.length:
 j = i;
 tmp = A[i];
 while j > 0 and tmp < A[j-1]:
 A[j] = A[j-1]
 j—-
 i++

Best Worst

A O(n) O(n)
B O(n2) O(n)
C O(n) O(n2)
D O(n2) O(n2)

ABCD: What’s the best and
worst-case asymptotic runtime
complexity of insertionSort2?

Why are we talking about
recursion, I thought we were
learning how to sort things?

mergeSort(A, start, end):
 if (A.length < 2):
 return
 mid = (end-start)/2
 mergeSort(A,start,mid)
 mergeSort(A,mid, end)
 merge(A, start, mid, end)

Goals:
• Understand how recursive methods are

executed.

• Be able to understand and develop
recursive methods without thinking about
the call stack.

How do we execute
recursive methods?

x = max(1,3)
=> 3

How do we execute
non-recursive methods?

x =
3

 max(1,3)

How do we execute
non-recursive methods?

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 * fact(0)

=> 1

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 *

1
fact(0)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 * fact(1)
=> 1 * 1

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 * fact(2)

=> 2 *
1

fact(1)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 3 *

2
 fact(2)

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

fact(3)
=> 6

/** return n!; pre: n >= 0 */
fact(n):
 if n == 0:

return 1
return n * fact(n - 1)

How do we execute
recursive methods?

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:
n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

Problem 1: If I call fib(3),

A. How many times is fib called? (show your work)

B. What value is returned?

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:
n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

1A - ABCD:
A. 3

B. 4

C. 5

D. 6

Your turn

/** return the nth fibonacci number
 * precondition: n >= 0 */
fib(n):
 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Fibonacci:

Problem 2: If I call fib(4),

A. How many times is fib called? (show your work)

B. What value is returned?

n: 0 1 2 3 4 5 6 7 8

fib(n): 0 1 1 2 3 5 8 13 21

1A - ABCD:
A. 3

B. 4

C. 5

D. 6

1. Make sure it has a precise specification.

2. Make sure it works in the base case.

3. Ensure that each recursive call makes
progress towards the base case.

4. Replace each recursive call with the
spec and verify overall behavior is correct.

How do we understand recursive methods?  

def count_e(s):
“”” returns # of ‘e’ in string s
“””
if len(s) == 0:

return 0
first = 0
if s[0] == ‘e’:
 first = 1

return first + count_e(s[1..end])

How do we understand recursive methods?  

1. spec

2. base case

3. progress4. recursive call —> spec

Got it?
This code has at least one bug:

dup(String s):
if s.length == 0:

return s

return s[0] + s[0] + dup(s)

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s)

1. spec!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s)

3. progress!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

Got it?
/** return a copy of s with each
 * character repeated */
dup(String s):

if s.length == 0:
return s

return s[0] + s[0] + dup(s[1..s.length])

3. progress!

1. Spec

2. Base case

3. Progress

4. Recursive call

<=> spec

1. Write a precise specification.

2. Write a base case without using recursion.

3. Define all other cases in terms of
subproblems of the same kind.

4. Implement these definitions using the
recursive call to compute solutions to the
subproblems.

How do we develop recursive methods?  

=

Examples:

• civic

• radar

• deed

• racecar

Palindromes

racecar
=

=

palindrome

=

Recursive definition: A string s is a palindrome if

• s.length < 2, OR

• s[0] == s[end-1] AND s[1..end-2] is a palindrome

racecar
=

palindrome

Recursive definition: A string so is a palindrome if

• s.length < 2, OR

• s[0] == s[end-1] AND s[1..end-2] is a palindrome

Problem 3: Write a recursive palindrome checker:

/** return true iff s[start..end]
 * is a palindrome */
public boolean isPal(s, start, end) {
 // your code here
}

