CSCI 241: Data
Structures

Lecture 2
Runtime Analysis Continued

Quiz time!!!

e On review topics.
* Not graded - participation credit only.

e 10 minutes

Announcements

Course webpage link sent via Canvas.
Slides will be posted on the webpage after each lecture.
Lab attendance policy has been refined.

Action item: make a GitHub account by next week’s lab.

Last Time

e We care how fast things run.
e Trade-offs between operations:
e FilingCabinet vs PilingCabinet

e Runtime analysis: counting “primitive operations”.

“Primitive” Operations

Things the computer can do in a “fixed” amount of time.
“fixed” - doesn’t depend on the input size (n)

A non-exhaustive list:

 (Get or set the value of a variable or array location

 Evaluate a simple expression

e Return from a method

findMax (A, n):
input: an array A of n integers
output: the maximum value in A

currentMax = a[0] .rrrrrreneen. 1 1
for 1 in 1. .n:

v i1f currentMax < A[1i]:.... 1 N
;§ currentMax = A[1] 1 N
Z

return currentMax; 1 1

sillyFindMax (A, n)
input: an array A of n integers
output: the maximum value in A

for i in 0. .n:
isMax = true.......cccocueeen. 1 N
// search for an element bigger than A[i]

‘q’; for 9 in 0..n:
El 3| if A[J] > ALil ..., 1 N2
E g isMax = false........... 1 N2
Z
if isMax:
return A[i] .coeiiiennn.. 1 1

1+N+2N?2

Input interpretation:

2+2n
plot n—11to 1000
l+n+n°

Plot:
lxlO6

800000

600000

400000

200000 w2 n+1) findMin

h — 2 I I -
200 400 600 800 1000 77w+ 1 osillyFindMin

Input interpretation:

n
plot 2+2n 7 11to 1000
l+n+n’
Plot:
500000 ’
//
400000
//
300000 //
I / .. findMin
y - (fast computer)
/
100000 e == 2(n+11 findMin
- o

_ 2 . . .
200 400 600 800 1000 77 an e LosillyFindMin

Asymptotic Runtime

Complexity

e As the problem size (n) gets large:

the difference between complexity classes

dwarf the differences within them.

e To go from a count of operations to a big-O class:

e Keep only the fastest-growing term

e Drop any constants

4 is O(1)

600 is O(1)

n-2 is O(n)

n4 +2n + 4 is O(n4%)
n! + n2%6 is O(n!)

Big-0O, Informally

* “iIs O(n)” means “is in the same complexity class as n”

» Because constants get ignored, we can often use simple
shortcuts:

» Single loop: often O(n)
« Two nested loops: often O(n2)

* When loop iteration variable increases as a factor of b:
O(f(logb N))

Really? *any* constant?

A practical argument:
e My MacBook Pro from 2013: 3.17 gigaFLOPs

e Fastest supercomputer as of June 2018: 200 petaFLOPs

e Supercomputer is 63,091,482 times faster.

Input interpretation:

n2

plot =010 1000000000
63001482 n

@ Enlarge | ¥ Data | @ Customize | A Plaintext | @ Interactive

FI0T.
1 x1018
8x1017
6x1017
4x10l7

l-.
2x10*! _,.)2

- 63091482n

109 4x10% 6x10° 8x10% 1x10°

n2 algorithm may be faster here!

Really? *any* constant?

A theoretical argument:

Formal definition of big-O:

A function f(n) is O(g(n)) IF there exist constants ¢ and N
such that for all n larger than N, f(n) < c*g(n).

_— Graphical
¢ /,// _ VIEW
— i
c-g(n)” e
// //
/" 1(n)
/
,/7'\/_,/_/:(/

S ; Get out far enough
< S (forn > N)
i f(n) is at

’ . most c-g(n)
N

O(1)

e Primitive operations:
e (Get or set the value of a variable or array location
e Evaluate a simple expression
e Return from a method

e Why are these all O(1)?

Common Complexities

Big-O Complexity Chart
[torribte) [pea| -atr| cooc| [Excelient]

Operations

Elements

Big-O: Example

Algl (n) :
sum = 0;
for 1 = 0..n: A- 0(1)
for 3 =1..100: B- O(n)
sum += 1% C: O(nz)

return sum; D: O (n3)

