
CSCI 241: Data
Structures

Lecture 2
Runtime Analysis Continued

Quiz time!!!

• On review topics.

• Not graded - participation credit only.

• 10 minutes

Announcements

• Course webpage link sent via Canvas.

• Slides will be posted on the webpage after each lecture.

• Lab attendance policy has been refined.

• Action item: make a GitHub account by next week’s lab.

Last Time

• We care how fast things run.

• Trade-offs between operations:

• FilingCabinet vs PilingCabinet

• Runtime analysis: counting “primitive operations”.

“Primitive” Operations
Things the computer can do in a “fixed” amount of time.

A non-exhaustive list:

• Get or set the value of a variable or array location

• Evaluate a simple expression

• Return from a method

“fixed” - doesn’t depend on the input size (n)

findMax(A, n):
input: an array A of n integers
output: the maximum value in A

 currentMax = a[0]
 for i in 1..n:
 if currentMax < A[i]:
 currentMax = A[i]

 return currentMax;

……………..……1

……1
……..…1

…………….…1

N
 ti

m
es

1

N
N

1

2 + 2N

sillyFindMax(A, n)
input: an array A of n integers
output: the maximum value in A

 for i in 0..n:
 isMax = true
 // search for an element bigger than A[i]
 for j in 0..n:
 if A[j] > A[i]:
 isMax = false

 if isMax:
 return A[i]

……………..……1

…………1
..………1

.…………..……1

N
 ti

m
es

N
 ti

m
es

N

N2

N2

1

1+N+2N2

findMin

sillyFindMin

findMin

sillyFindMin

findMin

(fast computer)

Asymptotic Runtime
Complexity

• As the problem size (n) gets large:

the difference between complexity classes  
dwarf the differences within them.

• To go from a count of operations to a big-O class:

• Keep only the fastest-growing term

• Drop any constants

4 is O(1)
600 is O(1)
n-2 is O(n)
n4 + 2n + 4 is O(n4)
n! + n256 is O(n!)

Big-O, Informally
• “is O(n)” means “is in the same complexity class as n”

• Because constants get ignored, we can often use simple
shortcuts:

• Single loop: often O(n)

• Two nested loops: often O(n2)

• When loop iteration variable increases as a factor of b:
O(f(logb N))

Really? *any* constant?
• My MacBook Pro from 2013: 3.17 gigaFLOPs

• Fastest supercomputer as of June 2018: 200 petaFLOPs

• Supercomputer is 63,091,482 times faster.

A practical argument:

n2 algorithm may be faster here!

Formal definition of big-O:

A function f(n) is O(g(n)) IF there exist constants c and N
such that for all n larger than N, f(n) < c*g(n).

Really? *any* constant?
A theoretical argument:

O(1)

• Primitive operations:

• Get or set the value of a variable or array location

• Evaluate a simple expression

• Return from a method

• Why are these all O(1)?

 Common Complexities

Alg1(n):
 sum = 0;
 for i = 0..n:
 for j = 1..100:
 sum += i*j
 return sum;

Big-O: Example

A: O(1)
B: O(n)
C: O(n2)
D: O(n3)

