CSCI 141

Scott Wehrwein

(Tuples,)

Goals

» Understand the basic usage of tuples:

» using tuples to return multiple values from a function

» packing and unpacking via the assignment operator

Your task:
Draw this.

& 5

-ﬁr'ir A
;i'!".- .'i'!i‘. ° .‘ .
i_

8555
. 4 g
shAh ¥
AsAAASS M
T

-;':'i'!"l’

r'#
_ &0 08

h
S

AHLH 4

A4: Pseudocode

Let p be a random point in the window
loop 10000 times:

c = a random corner of the triangle
m = the midpoint between p and c
choose a color for m

color the pixel at m

p=m

W H K S

Strategy: break this down into manageable pieces by
inventing functions that solve pieces of the problem!

A4: Pseudocode

Let p be a random point in the window
loop 10000 times:

c = a random corner of the triangle
m = the midpoint between p and c
choose a color for m

color the pixel at m

p=m

W H K S

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rmrm Return the midpoint between

(Plx, ply) and (p2x, p2y)

4 rr n

code here

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“nn Return the mibetween

(Plx, ply) and (p2x, p2y)

4 rr n

code here

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“mrr Return the midp between

(plx, ply) and p2y)

4 rr n

code here
(mid_x, mid_y)

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“mrr Return the midp between

(plx, ply) and p2y)

4 rr n

code here
(mid_x, mid_y)

This Is two
things!?
Can we return
two things?

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“#mr Return the midp between
(plx, ply) and p2Y)

4 rr n

code here
mid x = . . . (mid_x, mid_y)
mid y =

return mid x, mid y

Returning Multiple Values

e You can return multiple values from a
function by grouping them into a comma-
separated sequence:

return mid x, mid y

* YOou can assign each to a variable when
calling the function like this:

midpoint(plx, ply, p2x, p2y)

mx, my

These are actually tuples

e A tuple is a sequence of values, optionally

enclosed in parens. \
(of any types!)

(1, 4, “Mufasa”)

* You can “pack” and “unpack” them using
assignment statements:

v = (1, 4, "Mufasa'") # packing

(a, b, ¢) = v # "unpacking”

These are actually tuples

e Tuples can also be passed into functions as
arguments:

def midpoint(pl, p2):
“rrCompute the midpoint between pl and p2”"”

plx, ply = pl
p2x, p2y = p2
.

return mx, my

Tuples: Demo

Tuples: Demo

e assignment, packing, unpacking
e with and without parens (printing)
* swapping

e equality

e mismatched # values to unpack

Tuples - 1

a:

b = 2

c = 3

v = (a, a, c)
print(v, sep=" ")

What does this print?
A: 1 2 3

B: 1 1 3

C: (1, 2, 3)

D: (1, 1, 3)

Tuples - 2

a:

b =2

c = 3

a, b, ¢ = (a, a, c¢)
print(a, b, ¢, sep=" ")

What does this print?
A: 1 2 3

B: 1 1 3

C: (1, 2, 3)

D: (1, 1, 3)

Midpoint Function

def midpoint(plx, ply, p2x, p2y):
“rmrm Return the midpoint between
(plx, ply) and (p2x, p2y)

4 rr n

code here
mid x =
mid y =

return mid x, mid y

Midpoint Function

mid x =

mid y =

Okay, but how do you actually calculate this?
(p2x5 pZY)

(mid_x, mid_y)
= mid_y

(P1x, p1y) mid_x

mid_X = (p1x + p2x) /2
mid_y = (p1y + p2y) / 2

Demo: writing the midpoint
function

e With tuple as return value

e Switch to tuples as parameters for points

