
CSCI 141
Scott Wehrwein

(Tuples,)

Goals
• Understand the basic usage of tuples:

• using tuples to return multiple values from a function

• packing and unpacking via the assignment operator

A4
Your task:
Draw this.

A4: Pseudocode
 # Let p be a random point in the window

 # loop 10000 times:

 # c = a random corner of the triangle

 # m = the midpoint between p and c

 # choose a color for m

 # color the pixel at m

 # p=m

Strategy: break this down into manageable pieces by

inventing functions that solve pieces of the problem!

A4: Pseudocode
 # Let p be a random point in the window

 # loop 10000 times:

 # c = a random corner of the triangle

 # m = the midpoint between p and c

 # choose a color for m

 # color the pixel at m

 # p=m

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

(mid_x, mid_y)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

(mid_x, mid_y)

This is two
things!?

Can we return
two things?

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

 # mid_x = . . .

 # mid_y = . . .

 return mid_x, mid_y

(mid_x, mid_y)

Returning Multiple Values
• You can return multiple values from a

function by grouping them into a comma-
separated sequence: 
 

• You can assign each to a variable when
calling the function like this:

return mid_x, mid_y

mx, my = midpoint(p1x, p1y, p2x, p2y)

These are actually tuples
• A tuple is a sequence of values, optionally

enclosed in parens.

• You can “pack” and “unpack” them using
assignment statements:

(1, 4, “Mufasa”)

v = (1, 4, "Mufasa") # packing

(a, b, c) = v # "unpacking"

(of any types!)

These are actually tuples
• Tuples can also be passed into functions as

arguments:
def midpoint(p1, p2):

 “””Compute the midpoint between p1 and p2”””

 p1x, p1y = p1

 p2x, p2y = p2

 # . . .
 # return mx, my

Tuples: Demo

Tuples: Demo
• assignment, packing, unpacking

• with and without parens (printing)

• swapping

• equality

• mismatched # values to unpack

Tuples - 1
a = 1
b = 2
c = 3

v = (a, a, c)

print(v, sep=" ")

What does this print?
A: 1 2 3
B: 1 1 3
C: (1, 2, 3)
D: (1, 1, 3)

Tuples - 2
a = 1
b = 2
c = 3

a, b, c = (a, a, c)

print(a, b, c, sep=" ")

What does this print?
A: 1 2 3
B: 1 1 3
C: (1, 2, 3)
D: (1, 1, 3)

Midpoint Function
def midpoint(p1x, p1y, p2x, p2y):
 “”” Return the midpoint between

 (p1x, p1y) and (p2x, p2y)

 “””

 # code here

 # mid_x = . . .

 # mid_y = . . .

 return mid_x, mid_y

Midpoint Function
 # mid_x = . . .

 # mid_y = . . .

Okay, but how do you actually calculate this?

(p1x, p1y)

(p2x, p2y)

mid_x

mid_y
(mid_x,mid_y)

mid_x = (p1x + p2x) / 2
mid_y = (p1y + p2y) / 2

Demo: writing the midpoint
function

• With tuple as return value

• Switch to tuples as parameters for points

