
CSCI 141
Scott Wehrwein

"""Docstrings, Preconditions, and Postconditions"""

Goals
• Know the syntax for triple-quoted strings

• Know the convention for writing docstrings
that describe a function’s specification

• Know what does and does not belong in a
function specification

• Know the definition and purpose of
preconditions and postconditions

Functions, Revisited
What is a function, anyway?
• As a user, you can treat a function as a “black box”:

all you need to know is:

• the inputs, effects, and return value.

• Functions are named chunks of code.

Input(s) Return value
(Effects)

A bunch of (complicated)
stuff is wrapped up in a nice,

easy-to-use package.

Function Syntax: Summary

def name(parameters):
 statements

def keyword function name

comma-separated
list of parameters:

variable names that
will get assigned to
the arguments

An indented code block that
does any computation,
executes any effects, and
(optionally) returns a value

inputs

effects; return value

Why are functions great?
• Concise - wrap something complicated in

an easy-to-use package

• Customizable - make the easy-to-use
package do different things

• Composable - use the result of one
computation as input to (or as one step in)
another

Demo: Function to draw a
square using a turtle

Demo: Function to draw a
square using a turtle

• Concise: turtle_square call tells the turtle to
do a bunch of things

• Customizable: turtle_rectangle(t, w, h)
function draws a w-by-h rectangle

• add docstrings at the end!

What’s """ this """ about? Two things in one:

• Multiline strings: An alternate way to write strings that
include newlines.

• A docstring: The conventional way to write comments that
describe the purpose and behavior of a function.

def turtle_rectangle(t, w, h):
 """ Draw a w-by-h rectangle using turtle t
 """
 for i in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)

turtle_rectangle

Multiline Strings and
Docstrings: Demo

Multiline Strings and
Docstrings: Demo

• Multiline strings: printing, assigning, etc.

• A string on a line by itself has no effect on the program.

• Docstrings in functions are like comments (but aren’t,
technically)

Docstrings
Docstrings are not required by the language.

Docstrings are required by me from now on.

• A docstring tells you what the function
does, but not how it does it.

• In other terms, it tells you what you need to
know to use the function, but not what the
function’s author needed to know to write it.

Docstrings: Example
The (actual) source code for turtle.forward:

 def forward(self, distance):
 """Move the turtle forward by the specified distance.

 Aliases: forward | fd

 Argument:
 distance -- a number (integer or float)

 Move the turtle forward by the specified distance, in the direction
 the turtle is headed.

 Example (for a Turtle instance named turtle):
 >>> turtle.position()
 (0.00, 0.00)
 >>> turtle.forward(25)
 >>> turtle.position()
 (25.00,0.00)
 >>> turtle.forward(-75)
 >>> turtle.position()
 (-50.00,0.00)
 """
 self._go(distance)

Docstring:

Implementation:

Docstrings: Example
Python documentation is generated from the
docstrings in the code!

What belongs in a docstring?

• As a user, you can treat a function as a “black box”:
all you need to know is:

• the inputs, effects, and return value.

• Docstrings give a user of your function everything they
need to know to call it.

• A docstring should explain what the function does, 
but not how the function works

Input(s) Return value
(Effects)

What belongs in a docstring?

Input(s) Return value
(Effects)

preconditions:

Things the caller is responsible for
ensuring before the function is called.

postconditions: 
Things the function is responsible for

ensuring by the time the function returns.

f

like comments, these are human constructs, not part of Python

Preconditions: why?
• Demo: abs.py

• Absolute value only makes sense on
numbers, so specify a precondition that
the input must be a number.

Postconditions: why?
• Demo: turtle_rectangle.py

• It's important to know where a Turtle
function leaves the turtle so you know how
to continue with your drawing.

• Specify a postcondition that the turtle ends
up in the same position and direction as it
started.

Preconditions and Postconditions: 
Assigning Blame

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.

 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

This is your fault.
ZeroDivisionError: float division by zero

Bad news:

Example. Suppose you wrote this function:
def split_bill(bill_amt, tip_pct, num_diners):
 """ Return the total owed by each diner for a
 restaurant bill of bill_amt, assuming a tip
 percent of tip_pct and splitting the bill
 evenly among num_diners people.
 Precondition: num_diners > 0
 """
 total = bill_amt + (bill_amt * tip_pct/100)
 return total / num_diners

>>> split_bill(34.78, 18.0, 0)

ZeroDivisionError: float division by zero

Preconditions and Postconditions: 
Assigning Blame

This is my fault.Good news:

