CSCI 141

Scott Wehrwein

"""Docstrings, Preconditions, and Postconditions"""



Goals

Know the syntax for triple-quoted strings

Know the convention for writing docstrings
that describe a function’s specification

Know what does and does not belong in a
function specification

Know the definition and purpose of
preconditions and postconditions



Functions, Revisited

What is a function, anyway?

 As a user, you can treat a function as a “black box”:
all you need to know is:

 the Iinputs, effects, and return value.

e Functions are named chunks of code.

Input(s) — - — Return value

(Effects)

A bunch of (complicated)
stuff is wrapped up in a nice,
easy-to-use package.



Function Syntax: Summary

def keyword| [function hame

\ /

def name(parameters):

comma-separated

r statements \ inputs

list of parameters:

An indented code block that variable names that
does any computation, will get assigned to
executes any effects, and the arguments
(optionally) returns a value

effects; return value



Why are functions great?

e Concise - wrap something complicated in
an easy-to-use package

e Customizable - make the easy-to-use
package do different things

e Composable - use the result of one
computation as input to (or as one step in)
another



Demo: Function to draw a
square using a turtle



Demo: Function to draw a
square using a turtle

e Concise: turtle_square call tells the turtle to
do a bunch of things

e Customizable: turtle_rectangle(t, w, h)
function draws a w-by-h rectangle

e add docstrings at the end!



turtle rectangle

def turtle rectangle(t, w, h):
""" Draw a w-by-h rectangle using turtle t
for 1 in range(2):

.forward(w)

.1left (90)

.forward(h)

.left(90)

What’s """ this """ about? Two things in one:

* Multiline strings: An alternate way to write strings that
iInclude newlines.

* A docstring: The conventional way to write comments that
describe the purpose and behavior of a function.



Multiline Strings and
Docstrings: Demo



Multiline Strings and
Docstrings: Demo

 Multiline strings: printing, assigning, etc.
* A string on a line by itself has no effect on the program.

 Docstrings in functions are like comments (but aren’t,
technically)



Docstrings

Docstrings are not required by the language.
Docstrings are required by me from now on.

* A docstring tells you what the function
does, but not how It does It.

e |n other terms, it tells you what you need to
know to use the function, but not what the
function’s author needed to know to write It.



Docstrings: Example

The (actual) source code for turtle.forward:

def forward(self, distance):
"""Move the turtle forward by the specified distance.

Docstring:

Aliases: forward | £fd
Argument:
distance -- a number (integer or float)

Move the turtle forward by the specified distance, in the direction
the turtle is headed.

Example (for a Turtle instance named turtle):
>>> turtle.position()

(0.00, 0.00)

>>> turtle.forward(25)

>>> turtle.position()

(25.00,0.00)

>>> turtle.forward(-75)

>>> turtle.position()

(-50.00,0.00)

Implementation: seit. go(distance)



Docstrings: Example

Python documentation is generated from the
docstrings in the code!

turtle. forward(distance)
turtle. £d(distance)

Parameters: distance - a number (integer or float)

Move the turtle forward by the specified distance, in the direction the turtle is headed.

>>> turtle.position()
(0.00,0.00)

>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)

>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)



What belongs in a docstring?

e As a user, you can treat a function as a “black box”:
all you need to know Is:

 the Inputs, effects, and return value.

* Docstrings give a user of your function everything they
need to know to call it.

* A docstring should explain what the function does,
but not how the function works



What belongs in a docstring?

preconditions:
Things the caller is responsible for
ensuring before the function is called.

like comments, these are human constructs, not part of Python

postconditions:
Things the function is responsible for
ensuring by the time the function returns.



Preconditions: why?

e Demo: abs.py

 Absolute value only makes sense on
numbers, so specify a precondition that
the input must be a number.



Postconditions: why?

e Demo: turtle_rectangle.py

e |[t's Important to know where a Turtle
function leaves the turtle so you know how
to continue with your drawing.

e Specify a postcondition that the turtle ends
up in the same position and direction as it
started.



Preconditions and Postconditions:
Assigning Blame

Example. Suppose you wrote this function:

def split bill(bill amt, tip pct, num diners):

""" Return the total owed by each diner for a
restaurant bill of bill amt, assuming a tip
percent of tip pct and splitting the bill
evenly among num diners people.

total = bill amt + (bill amt * tip pct/100)
return total / num diners

&% >>> split bill(34.78, 18.0, 0)
| ZeroDivisionError: float division by zero

Bad news: This is your fault.



Preconditions and Postconditions:
Assigning Blame

Example. Suppose you wrote this function:

def split bill(bill amt, tip pct, num diners):
""" Return the total owed by each diner for a
restaurant bill of bill amt, assuming a tip
percent of tip pct and splitting the bill

evenly among num diners people.
Precondition: num diners > 0

total = bill amt + (bill amt * tip pct/100)
return total / num diners

&% >>> split bill(34.78, 18.0, 0)
ZeroDivisionError: float division by zero

Good news: This is my fault.



